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3.5 The di�erent aggregation schemes available in Sequence Surveyor.
(a) Averaging reveals high-level trends in the blocks. (b) Robust aver-
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in smoother color fields conveying the dominant trends in the data.
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composed, the data within each bin is reduced locally and encoded
using a perceptually-inspired glyph designed to support a specific
type of visualization task. . . . . . . . . . . . . . . . . . . . . . . . . 36
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scale of months). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 We consider the design variables of a visualization in order to make
predictions about how it supports di�erent aggregate comparison
tasks. We analyzed 8 time series visualization techniques using 3
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4.4 A summary of our experimental results. All measures are in accu-
racy across all participants. Gray rows indicate position encodings;
white indicate color encodings. Gray columns indicate summary
comparison tasks; white columns indicate point comparison tasks.
An "X" indicates that the encoding does not a�ord that task. and
so no experiment was conducted for this combination of task and
encoding. Since performance is not strictly comparable across tasks,
cell color encodes the number and direction of standard deviations
from the task mean: 6 -1 , (-0.5,-1) , [0.5,-0.5] , (1,0.5) , > 1 . 53
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gradients, are not those most closely related (the adjacent genomes).
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and absence across species. Bands of genes create conservation
“fingerprints” for each genome that align well for closely related
genomes. (c) Membership frequency (most (red) to least frequent
(blue)) combined with reference ordering (magenta box) highlight
uncommon regions of the reference: green columns in the reference
show that other species that share some relatively unique regions. 65
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5.4 Sequence Surveyor views shown on a toy dataset, each combining a
position mapping and a color mapping. Di�erent mappings make
di�erent patterns emerge in the color field. Subfigure rows show
di�erent position mappings, columns show color mappings (see
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5.9 Genome order can help reveal patterns between families of genomes.
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5.14 Clustering words according to the decades in which they are popular
and coloring according to popularity (red words are more popular
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5.18 Visualization of a validation experiment for a DNA-binding surface
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Visualization allows viewers to explore large collections of data. E�ective
visualizations must support viewers in understanding data both at high-levels
to investigate “big picture” statistics, patterns, and trends, and at low-levels to
examine individual values. Visualization design guidelines currently focus on how
designs can support low-level tasks, such as determining if one value is larger
than another, but far less is known about designing for high-level tasks. High-level
tasks require viewers to aggregate information across multiple datapoints, such as
estimating the average value of a set of points. Systems can explicitly compute these
values, but must know the task and data that viewers are interested in in advance
to do so. Instead, viewers frequently need to visually aggregate information across
multiple datapoints in a visualization. However, designs that are e�ective for
low-level tasks may not support visual aggregation, especially as datasets increase
in size and complexity. To remain e�ective at scale, visualizations must consider
how designs can support estimates both across multiple values (visual aggregation
tasks) and between individual values (low-level tasks).

This dissertation describes a set of experiments, metrics, and techniques that
allow visualizations to more e�ectively support both high- and low-level tasks
by using color. To support high-level tasks, I identify limitations that inhibit
visual aggregation in existing visualization designs and introduce novel designs
using color to overcome these limitations. I show how di�erent decisions made in
creating a visualization can support visual aggregation. I embody these results
in visualization systems that increase the size of datasets analysts can explore
for three di�erent domains. I address challenges of using color for low-level
tasks by generating metrics and guidelines for color encoding design tailored
to visualization. I first show how visualization designs can improve perceptions
of shadowed colors in surface visualizations. I then model how two factors of
visualization viewing (viewing enviroment and mark size) influence color encoding
perceptions in practice and show how these models can be used to guide e�ective
encoding design. The main technical contributions of this dissertation include a
method for task-driven aggregation for one-dimensional data, novel visualization
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Visualization allows viewers to explore large collections of data. E�ective visualiza-
tions must support viewers in understanding data both at high-levels to investigate
“big picture” statistics, patterns, and trends, and at low-levels to examine individ-
ual values. Visualization design guidelines currently focus on how designs can
support low-level tasks, such as determining if one value is larger than another,
but far less is known about designing for high-level tasks. High-level tasks require
viewers to aggregate information across multiple datapoints, such as estimating
the average value of a set of points. Systems can explicitly compute these values,
but must know the task and data that viewers are interested in in advance to do so.
Instead, viewers frequently need to visually aggregate information across multiple
datapoints in a visualization. However, designs that are e�ective for low-level
tasks may not support visual aggregation, especially as datasets increase in size
and complexity. To remain e�ective at scale, visualizations must consider how
designs can support estimates both across multiple values (visual aggregation
tasks) and between individual values (low-level tasks).

This dissertation describes a set of experiments, metrics, and techniques that
allow visualizations to more e�ectively support both high- and low-level tasks
by using color. To support high-level tasks, I identify limitations that inhibit
visual aggregation in existing visualization designs and introduce novel designs
using color to overcome these limitations. I show how di�erent decisions made in
creating a visualization can support visual aggregation. I embody these results
in visualization systems that increase the size of datasets analysts can explore
for three di�erent domains. I address challenges of using color for low-level
tasks by generating metrics and guidelines for color encoding design tailored
to visualization. I first show how visualization designs can improve perceptions
of shadowed colors in surface visualizations. I then model how two factors of
visualization viewing (viewing enviroment and mark size) influence color encoding
perceptions in practice and show how these models can be used to guide e�ective
encoding design. The main technical contributions of this dissertation include a
method for task-driven aggregation for one-dimensional data, novel visualization
systems for analyzing data in genomics, text analysis, and structural biology, and
a data-driven method for modeling perceived color di�erences.
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V ������������ allows analysts to directly see structure in information.
As the amount of data available to analysts grows, visualization has
become an increasingly critical part of the analyst’s toolbox. It sup-
ports dynamic exploration and pattern finding in large and complex

datasets without necessitating a priori questions or hypotheses. However, cur-
rent data visualization tools have often limited scalability. Many systems and
approaches are bound in terms of how much data they can communicate at a
given time, the complexity of individual datapoints, or the number of questions
(or tasks) that analysts can address.

How we design a visualization directly informs which of these dimensions of
scale a visualization can address. Studies in graphical perception, such as those
of Cleveland and McGill [1984], experimentally generate guidelines for designing
visualizations by measuring how accurately di�erent visual encodings of data
support viewers in completing di�erent tasks. Most of these guides focus on tasks
comparing individual values (e.g. how much larger is value a than value b). It
is unclear how well this kind of point-level task supports analysts in examining
millions of datapoints. It is ine�cient to explore every datapoint in a display, and
analysts are limited in their ability to remember complex datapoints [Alvarez and
Cavanagh, 2004]. Instead, analysts first need to develop an understanding of
the data in aggregate in order to locate interesting values to explore in greater
detail. For visualizations to remain e�ective at scale, they need to consider both
aggregate judgments that communicate the “big picture” and point judgments
that support specific comparisons within the data. In this dissertation, I will show
how designers can e�ectively use color to support analyses at both of these scales.

Aggregate analyses generally require the analyst to combine information from
multiple data values. This aggregation can be done in two ways: computationally
or visually. Computational aggregation uses statistics to compute the aggregate
value of interest, such as the average or line of best fit across collection of points,
and then visualizes the computed value. This approach requires the viewer to know
ahead of time which values and statistics they are interested in. Alternatively,
visual aggregation occurs when the viewer visually combines data to estimate
aggregate information. For example, viewers can visually estimate the average
position [Gleicher et al., 2013b] and correlation [Rensink and Baldridge, 2010]
between points from a scatterplot. Visual aggregation can be done flexibly (the
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Figure 1.1: Mean income for the United States (red) and 11 other countries (grey)
between 1980 and 20101. Comparisons between the average orientation and
position for the grey countries and the U.S. represent global changes in economic
status. While line graphs encode change over time well for one country, they
quickly become cluttered for 11 and make visual aggregation di�cult.

viewer does not need to explicitly specify points or tasks of interest) and e�ciently
(the viewer does not need to input any information and many values can be
estimated at a glance).

Here, I focus on visual aggregation as a way to inform visualization designs that
help analysts make sense of data as the dataset scales. At a high-level, visualiza-
tion design can support di�erent visual aggregation tasks—tasks that combine
information across multiple datapoints, such as estimating numerosity, averages,
or outliers. These tasks are commonly used in data analysis, but designers do
not necessarily take advantage of them when creating a visualization. They often
choose encodings that designed for point judgments, without considering how
they will be e�ective for aggregate tasks. For example, data journalists often
use visualization to pursuade readers. Visual aggregation come into play when
comparisons between di�erent collections of data provide evidence of a point.
Figure 1.1 is intended to show that the incomes for middle class families in the
United States are not growing as quickly as in the rest of the world. The supporting
visualization compares rates of change in income between the U.S. (red) and the
average rate of change of other countries (grey). To compare these values, viewers
must visually aggregate the vertical position and orientation of each set of grey
lines and compare the results to the orientation and position of the red lines. In
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(a) Eight E. Coli genomes visualized
using Mauve (Darling et al., 2004)

E Coli CFT0773

(b) The same data visualized using
color (Section 5.1)

Figure 1.2: Biologists want to understand how genetic material moves around
between organisms to understand high-level structural and functional patterns.
(a) Connection supports this task at small scales, but (b) color better supports
this task at larger scales.

this example, a design suitable for point tasks break down for visual aggregation.
While line graphs may encode data for individual countries e�ectively, the display
becomes cluttered for 11 countries, complicating visual averaging.

Visual aggregation is also important for exploring data in specialized domains.
For example, a biologist might want to understand what genetic material is common
across a set of genomes. They often explore this data using visualizations that
draw a line to connect matching genes (Fig. 1.2a). Connection is very good for
encoding relationships between small numbers of datapoints. When the amount of
data scales up, this encoding breaks down quickly: it is di�cult to make aggregate
estimates of how genetic material is shared between genomes. By instead using
color, designs can better support aggregate judgments about the same data (Fig.
1.2b).

Choropleth maps can encode high-level geographic patterns using color. For
example, Figure 1.3 helps viewers explore poverty geographically. The map uses
semantic zoom to support precise judgments for individual geographic regions.
The overview encodes information by county. Analysts can visually detect outlier
counties and estimate averages across di�erent regions (e.g. poverty is higher
in the Southeast than the Upper Midwest). However, this aggregation removes
potentially important details. For example, cities often have interesting internal
variations (as seen in the thumbnails below the map) that are lost at the county
level. It also limits our ability to understand the extent of these patterns. A county
with high poverty at its center but low poverty on its outside will appear identical
to one with uniform average poverty. Encoding data at a smaller granularity, such
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Figure 1.3: A choropleth map2showing the percetage of the population living
below the poverty line in the United States. Color is mapped to county, which
simplifies precise judgments at that scale, but hides potentially important patterns
at smaller scales. Reducing the granularity of the data would reveal these patterns
and may still support (or even improve) performance for visual aggregation tasks.

as that shown in the city views, would allow viewers to explore patterns at a finer
level of detail but may decrease viewers’ abilities to precisely estimate individual
values. In this dissertation, I will show that this trade-o� may be worthwhile for
understanding data at a high level: the visual system can e�ectively aggregate
color to make sense of large, dense datasets.

In the first half of this dissertation, I consider how designers can use color to
create visualizations that support aggregate tasks at scale. I outline how recent
findings from visual perception can help designers understand how di�erent visu-
alizations may (or may not) support visual aggregation for large datasets. These
findings suggest that designs that are e�ective for precise judgments between a
small number of points may not be e�ective for visual aggregation tasks. Color
provides a promising alternative for designing visualizations for visual aggrega-
tion. However, color is often disregarded as being ine�ective for quantitative data
visualization. This guidance comes from studies of precise judgments on small
datasets, where it underperforms encodings such as position and size. The ability
of the visual system to readily summarize and detect aggregate structure from
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Figure 1.4: Three five-step color ramps generated according to di�erent metrics.
All ramp colors should appear subtly distinct according to these metrics. Ramps
based on controlled viewing conditions (top: CIELAB �E and center: empirical
JNDs from colorimetry [Mahy et al., 1994a]) underestimate these di�erences. In
this dissertation, I will introduce metrics that model encoding perceptions for
visualization that are robust in practice for digital displays (bottom).

color has been used by artists for centuries for reasons perception can help us
understand. This ability allows designers to reconsider to the e�ectiveness of color
in visualization, with a specific focus on visual aggregation tasks.

The use of color for visual aggregation represents a trade-o�. E�ective vi-
sualizations must support both aggregate and point tasks—analysts generally
need to understand the big picture and also examine key datapoints. To support
point judgments, such as comparing two individual datapoints, encodings that
represent di�erent values should be visually distinct. Using color in visualization
complicates these kinds of judgments: the visual system can only distinguish
between a limited set of colors. While designers cannot increase the number of
colors viewers can distinguish, they can increase the di�erence between colors.

Most metrics for measuring the perceived di�erence between colors come from
colorimetry. These purpose of these metrics is to express the sensitivity of the
visual system to small di�erences in color. As a result, they do not consider
many of the complexities of viewing visualizations, such as variability in viewing
environment and aspects of visualization design (e.g. context and mark size), that
may impede perceptions of color-coded data. Current metrics often underestimate
how distinct two colors will appear when applied to visualization as a result of
these complexities (Fig. 1.43).

3These metrics are designed for digital displays rather than print media. While the methods
here could be used to build a robust model for print, printing may degrade apparent di�erences in
many of the presented examples.
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Some designers hand-tune color encodings to try to create encodings that
have su�ciently di�erent colors (e.g. Tableau, Brewer et al. [2003b], Samsel et al.
[2015]). These approaches require extensive expertise to accomplish e�ectively
and may also distort perceptual di�erences between colors. Instead, I propose a
series of experiments and data-driven models that generate guidelines for using
color e�ectively for point tasks.

In summary, current design guidance for visualization is largely based on
how well viewers perform precise point judgments. In order to remain e�ective
at scale, visualizations must consider how designs can support both estimates
across multiple values (visual aggregation tasks) and between individual values
(point tasks). This is challenging because designs that are e�ective at one scale
may not be appropriate for the other. I propose novel designs using color to
address this challenge that take advantage of how color is processed by the visual
system to support visual aggregation. I then introduce empirical guidelines and
metrics that model color di�erence perception under some of the complexities of
visualization viewing by modeling for anticipated, rather than precise, factors in
viewing visualizations.

It is the thesis of this dissertation that color encodings in data visualization
support visual aggregation and therefore increase visualization scalability,
and that many limitations of using color in visualization can be mitigated
through design guidelines and encoding metrics that consider encoding per-
ception in practice. I will prove this thesis using a combination of quantitative
experimental data and qualitative insights from domain experts using visualization
systems I have designed.

This dissertation will consist of two parts. In the first, I use theories from visual
perception to hypothesize how color and other visual cues might help support
visual aggregation tasks in practice and where limitations arise in existing designs.
I will then discuss the design and evaluation of several aggregate encodings that
leverage color to support these aggregate judgments at scale. Finally, I will discuss
three systems I have developed that embody these ideas in practice to support
data analysis at substantially larger scales than previous approaches.

In the second part, I will explore how we can mitigate limitations of color
encodings for point analysis tasks by modeling practical color perception for
visualization. Designers can approach this problem in two ways. First, they can
manipulate aspects of a visual design to support a given color ramp. For example,
the minimum mark size can be increased to support robust color comparisons.
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Alternatively, color encodings can be designed to conform to the constrains of
a display. For example, color di�erences can be increased to support a desired
range of mark sizes.

I will discuss a series of studies that explore visualization design from both
angles. First, I will consider how the design of a surface visualization can improve
color identification in shadow. I will then introduce a method for tailoring color
encoding design to di�erent viewing populations. I extend this method to modeling
color di�erences as a function of mark size and show how this model can be applied
to improve e�ective visualization design.

Unless otherwise specified, this dissertation will consider color as a method
that encodes data using a set of color values that vary in lightness, hue, and/or
saturation. Discussions surrounding color will generally focus on encoding quan-
titative data using either sequential (a set of colors with an intuitive ordering) or
diverging encodings (a pair of sequential encodings that share a common midpoint).
The second part of this dissertation could also readily be applied to designing
color encodings for categorical data.

1.1 Contributions
In this dissertation, I identify how visualization designs can use color to support
both aggregate and point analysis tasks. My approach will identify relevant theory
from perception to inspire novel design solutions. I will then take an application-
centered approach to validate these solutions for visualization. This leads to
several specific theoretical, experimental, and systems-level contributions. These
contributions are as follows:

• Color for Visual Aggregation:

– Perception for visual aggregation:
I provide a high-level organization of findings from perceptual psychology
that can be used to reason about visual aggregation at scale. I apply
these findings to two common encodings in one-dimensional data. This
organization helps identify limitations of existing encodings for visual
aggregation and suggests reasons why color might be an e�ective al-
ternative for visualizing information at scale. While this survey is by
no means exhaustive, it provides a framework for considering percetual
constraints in designing for visual aggregation tasks.



8

– Task-oriented aggregation techniques:
Scalability in visualization is often limited by the number of pixels avail-
able to represent data. To help overcome this limitation, I introduce a
method for representing one-dimensional data to support di�erent forms
of visual aggregation. This method operates in screen space to provide
the analyst with direct control over aggregation. The aggregate data is
represented through perceptually-inspired glyphs designed to support
specific comparison tasks. Two of these glyphs (event striping and color
weaving) represent novel designs for visualizing aggregate data.

– Design guidelines for visual aggregation in times series data:
I evaluate how three design decisions that go into creating an aggregate
visualization (how data are visually encoded, what data are encoded,
and how data are mapped to encoding) influence performance for two
forms of visual aggregation. These studies consider how the depicted
data, statistical granularity, and visual variables used to represent data
all contribute to viewers’ abilities to accomplish six visual aggregation
tasks (maxima, minima, range, mean, variance, and outlier numerosity).

– Systems using color to support visual aggregation at larger scales:
I introduce three systems I have developed that support visual aggre-
gation at scale for di�erent domains (whole genome alignments, text
analysis, and classifier predictions for structural biology). These sys-
tems support analysts in exploring data at greater scales than previously
possible.

• Engineering Color for Point Tasks:

– Guidelines for using color in surface visualization:
Color is commonly used to represent data value on molecular surfaces.
It may also be obscured by shading and shadows used to communicate
surface features. I present a series of experiments that show how visu-
alization design influences how well viewers can interpret data values
encoded as shadowed colors. The results of these studies point to specific
trade-o�s in surface visualization design.

– Modeling color di�erence perception in practice:
Conventional quantitative metrics for using color in visualization are
based on controlled laboratory studies that do not consider the com-
plications of display variability and other imperfections in visualization
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viewing. I introduce a data-driven method for modeling color perceptions
over a target audience that gives designers control over color discrim-
inability. I apply this method to construct color metrics for web-based
visualization using crowdsourced viewers.

– Model of color di�erence perception for di�erent mark sizes:
The appearance of a color encoding depends on the context of a visual-
ization design. It is di�cult to predict many aspects of a visualization
context a priori, but often size is well constrained and significantly influ-
ences viewers abilities to distinguish between encoded marks. I present
a model of color discriminability as a function of size. I show how this
model can be used to design e�ective color encodings in visualization.
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This chapter will briefly touch on prior work relevant to this dissertation. The
intention of this chapter is to contextualize the topics discussed in this dissertation
and motivate the importance of the dissertation topic to visualization. Additional
relevant work will be described in the ensuing chapters.

2.1 Addressing Scale in Visualization
As datasets grow in size and complexity, visualization systems must evolve to
better scale to these new challenges. They must support new data analysis
workflows while enabling serendipitous insights into patterns and trends. This
scalability presents an interesting challenge for visualization designers: how can
a visualization help people make sense of large and complex data.

One was to simplify data analysis is by explicitly computing and visualizing
statistics. Statistics provide compact summaries at the expense of raw data. They
also rely on understanding a priori what aspects of a dataset are interesting to
the viewer. Visualization, alternatively, allows the viewer to dynamically explore
large collections of data. Statistical quantitaties can then be visually estimated.
These visual aggregation judgments—judgments that integrate information across
multiple points—provide new questions for designers to consider when building a
visualization.

A visualization must show the relevant data to the analyst in order for visual
aggregation to be useful. Screen space is a barrier to this: there are a limited
number of pixels that can a visualization can use. Advancements in gigapixel
displays o�er scalability in terms of screen space, but massive displays may be
challenging for viewers to interpret [Andrews et al., 2011]. Perceptual challenges
also significantly limit the e�ectiveness of visualization design at scale—guidelines
for design may fail as the data grows [Fekete and Plaisant, 2002]. One suggestion
for overcoming these challenges is using overview visualizations with simple
designs that provide details and excess dimensionality only on demand. While
overview visualization has been extensively explored (see Hornb�k and Hertzum
[2011] for a survey), how to design overviews that support visual aggregation tasks
is largely unexplored.

A primary focus of this dissertation is understanding how color can facilitate
visualization at scale. There is an established tradition of using color for overview
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visualization (see Keim [2000], Shneiderman [2008] for examples). Heatmaps and
choropleth maps (e.g. Fig. 1.3) are two of the most common examples. Pixel-
oriented visualization techniques [Endert et al., 2011, Keim, 2000, Keim et al.,
2002] are also commonly used for overview because they map data compactly—
individual data values to pixels—allowing visualizations to maximize their use of
screen space. Other systems (e.g. Chromogram [Wattenberg and Viegas, 2010]
and Lasagna Plots [Swihart et al., 2010]) use colorfields to convey change across
distinct groups over time.

While these approaches scale to millions of datapoints, they break down when
the number of data points exceeds the available pixels on the screen. Approaches
have been proposed to address this issue. For example, Keim et al. [2007] use
importance functions to spatially filter data at large scales; however, this approach
relies on knowing and quantifying a priori what regions of the display are “im-
portant” and provide little transparency into what data is lost and how that data
might influence viewers abilities to accomplish certain tasks. Several approaches
computationally reduce the dataset (e.g. [Keim et al., 2007, Papadimitriou et al.,
2013]), but these methods also require knowing and quantifying relevant data a
priori. Other methods collapse data based on well-defined structures, such as
abstracting cliques into glyphs [Dunne and Shneiderman, 2013] or abstracting
data at di�erent levels of hierarchy [Elmqvist and Fekete, 2010]. However, these
methods provide little insight into aggregating information without well-defined
structural forms, such as ranked lists. In this dissertation, I show how visualiza-
tion can leverage the strengths of color for overview as datasets scale beyond the
bounds of the display (Chapter 3) and still support higher-level, visual aggregation
tasks (Chapters 4 and 5).

2.2 Graphical Perception
Visualization has a rich tradition of incorporating knowledge from perception into
design (see Healey and Enns [2012a] for a survey). Most guidelines for e�ective
visualization design come from graphical perception—the study of how well viewers
can interpret di�erent encodings of data. For example, Cleveland et al. [1985]
measured how accurately viewers could estimate values encoded using di�erent
visual channels, showing the benefits of size and position over color for quantitative
judgments. Healey et al. [1996] explored how pop-out could help viewers find
target datapoints, showing the value of size, orientation, and color for highlighting
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specific values. Heer et al. [2009] showed how di�erent designs for time series
data help viewers find and compare specific values. Haroz and Whitney [2012]
evaluated how grouping like items can improve viewers’ abilities to find target
values.

These experiments provide a wealth of grounded guidance for designing e�ective
visualizations at small scales. They also provide methodologies for reasoning about
the e�ectiveness of di�erent visualization approaches. However, they focus on
tasks involving small sets of well-defined datapoints. There is a broad range of
analysis tasks that a visualization might support. Understanding the space of
visualization tasks helps designers understand user needs and how design insights
might transfer across domains. For example, Shneiderman [1996] outlines seven
abstract tasks for visualization. Andrienko and Andrienko [2006] provides a more
detailed, hierarchical construction of task.

These taxonomies also provide means for reasoning about individual tasks. For
example, Schulz et al. [2013] consider how five dimensions of a task might inform
how visualizations might address it e�ectively. Roth [2012] organizes existing
concepts of task based on the goals, user actions, and characteristics of data that
might influence how a user interacts with a visualization to accomplish a given
task. Brehmer and Munzner [2013] shows how designers might consider why
and how a viewer might approach an abstract task to help tailor general design
ideas across specific domains.

This dissertation characterizes tasks di�erently than previous approaches,
dividing the space into point tasks answered using specific data values, such as
searching for a well-define target or comparing individual values, versus visual
aggregation tasks that combine data over a range of values, such as identifying
outliers or determining the average of a set of points. This division is selected as it
characterizes a broad set of tasks that are seldom studied in visualization. While
the graphical perception literature discussed above applies primarily to the first
class of tasks, less is known about how visualizations can support the second.

Recent work has evaluated performance for specific visual aggregation tasks,
such as estimating numerosity [Correll et al., 2013, Healey and Enns, 1998],
correlation [Rensink and Baldridge, 2010], and mean [Gleicher, 2013]. However,
these studies evaluate how well a specific visualization design support these
tasks (e.g. scatterplots and tagged text). Alternatively, some studies measure the
relative performance of di�erent visualization designs for tasks such as correlation
[Harrison et al., 2014] and trend [Fuchs et al., 2013]. These studies focus on
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evaluating complete designs rather than lower-level components of design. As a
result, it is unclear how these results translate to designing visualizations that
support visual aggregation tasks.

Research in visual perception might provide some clues as to how visualization
designs can support visual aggregation. Perception research focuses on how the
visual system processes abstract low-level features, such as color and position.
Chapter 3 will survey a number of results from perception to show how they might
inform designs that support visual aggregation at scale.

Of explicit relevance for visual aggregation is a collection of recent work on
ensemble statistics. These studies show that the visual system can readily sum-
marize visual features such as size Ariely [2001a], orientation Choo et al. [2012a],
and luminance Bauer [2010]. These visual summaries may serve as a sca�old for
visual aggregation tasks by providing low-level statistical summaries of relevant
data.

While this work can inspire theories about e�ective visualization, it is di�cult
to use these findings directly for several reasons. Perception experiments often
test judgments about a small collection of simple stimuli that are presented
for very brief (often < 1 second) durations under highly controlled conditions.
Visualizations, conversely, are often complex with lots of data, unlimited exposures,
and are viewed under variable conditions. As a result, visualizations drawing on
visual perception for design inspiration must consider how well the cited studies
translate to visualizations. Designs frequently need to be evaluated in studies
specific to visualization in order to truly understand their e�ectiveness.

In this dissertation, I will survey results from visual perception to hypothesize
about e�ective design for visual aggregation (Chapter 3). I will evaluate these
designs in the context of six visual aggregation tasks (Chapter 4) and demonstrate
how they can support analysis across di�erent visualization domains (Chapter 5).

2.3 Using Color in Visualization
Color is just one of a number of visual variables that can be used to encode data
values in visualization. The canonical set of variables are size, texture, orientation,
shape, position, value, and color, where value refers to how light or dark a color is
and color refers to its hue Bertin [1983]. Work since has added additional variables,
such as motion Carpendale [2003], and considered their e�ectiveness for di�erent
kinds of information, such as communicating uncertainty MacEachren et al.
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[2012] or cartographic data Garlandini and Fabrikant [2009]. Three principle
visual variables are components of the color of a mark: lightness, saturation, and
hue. In visualization, hue is principally used to encode categorical values whereas
lightness and saturation can be used to represent quantitative data Rogowitz and
Treinish [1998]. However, color encodings frequently introduce variations in all
three components to improve visual appeal Brewer et al. [2003b]. Thoughout this
dissertation, the term “color” will refer to encodings that may vary across any of
these three components unless otherwise specified.

While color encodings are promising for visual aggregation tasks, they are
known to be less e�ective for performing point tasks on quantitative data [Cleve-
land et al., 1985]. Color su�ers from a number of limitations for point tasks.
For example a limited number of colors can be distinguished at a given time
[Ware, 2000], simultaneous contrast can alter the appearance of color [Mittelstädt
et al., 2014], and e�ective color ramp design is challenging [Silva et al., 2011].
Some of these biological limitations—a visualization cannot increase the number
of discernable colors the viewer can perceive—but others might be addressible
through encoding design.

Visualizations can address some of these issues though color encoding design.
Many approaches have been proposed for e�ective encoding design (see Silva
et al. [2011] for a survey). For example, Tominski et al. [2008] propose methods
for visualizing colors based on data distributions to increase the e�ectiveness
of color encodings for di�erent datasets. PravdaColor [Rogowitz and Treinish,
1998] provides guidelines for ramp design based on task. ColorCAT provides color
encoding design tools for supporting color-blind users [Mittelstädt et al., 2015].
ColorBrewer [Brewer et al., 2003b] provides hand-designed ramps based on best
practices in cartography that are commonly used in visualization. All of these
solutions can support e�ective encodings, but they do not provide encodings
where data value correlates with perceived color di�erence.

Perceptual metrics for color have some utility for creating encodings that
correlate di�erences in color to di�erences in value. A common metric used
in visualization design is CIELAB. CIELAB represents color using three axes—
lightness (L⇤), red-green a

⇤, and blue-yellow (b⇤)—that model the three opponent
processes the visual system uses to detect color. CIELAB is an approximately
perceptually uniform color space, meaning Euclidean distances within CIELAB
should correspond to the perceived di�erences between colors. One unit of
Euclidean distance approximately maps to one just-noticeable color di�erence
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(JND) under calibrated conditions. Designers have used CIELAB to try to control
the apparent di�erence between colors to try to guarantee that certain values will
be discriminable and that perceived di�erences map to value. For quantiative
data, CIELAB allows visualization designers to try to divide color space e�ectively:
dividing a ramp too finely makes it di�cult to distinguish between values while
dividing too coarsely reduces the number of values that can encode data. The
ability to identify a di�erence between colors can support visualization tasks that
require viewers to compare individual values.

CIELAB has been used to guide encoding design in visualization. For example,
MagnaView [Wij�elaars et al., 2008] generates perceptually-linear ColorBrewer
ramps by interpolating curves between control colors in CIELCH (CIELAB ex-
pressed in polar coordinates). However, CIELAB only approximates perceived color
di�erences—perceived di�erences vary across di�erent parts of the color space
[Luo et al., 2001]. More complex models provide more accurate insight into color
di�erence (see Robertson [2007] for a survey), but the simplicity of CIELAB makes
it a popular choice for visualization tools (e.g. [Cao et al., 2010, Kaski et al., 1999,
Livingston et al., 2011, Wang et al., 2008]). Some encodings account for these
imperfections by hand (e.g. Samsel et al. [2015]), but this process does not scale
well nor does it provide quantitative guarantees of e�ectiveness.

A more significant limitation to using CIELAB in visualization is that it was
not designed for use in visualization. CIELAB was created to gauge the sensitivity
of the eye to color. It models di�erence perceptions under laboratory conditions:
lighting, display parameters, viewing angle and distance, and surround all were
highly controlled [L’Eclairage, 1978]. However, factors such as increased direct or
ambient lighting [Brainard and Wandell, 1992, Oicherman et al., 2008, Rizzo et al.,
2002], background and surrounding colors [Mullen, 1985, Stokes et al., 1992],
the size of a mark [Carter and Silverstein, 2010], and display device [Krantz, 2001,
Sarkar et al., 2010] all can substantially degrade the di�erentiability of colors in
practice. This complicates using CIELAB directly in visualization: visualizations
operate under uncontrolled conditions and the design of a visualization (and
therefore the size of a mark and surrounding color composition) is generally
dependent on the data. In practice, a visualization designer cannot tune their
design on the fly to account for this variation. Instead, e�ective encoding design
must anticipate the expected variation and design color encodings that are robust
to those variations.

Some studies have started to consider color perception for visualization. For
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example, Mittelstädt et al. [2014] uses a post-process to correct for luminance
contrast in visualization design. Crowdsourced studies have explored color under
variable viewing conditions. Heer and Stone [2012] models crowdsourced color
naming metrics and shows their applicability to qualitative encoding design. Zu�
et al. [2009] explore how to design colors combinations that are legible online.
However, the e�orts provide little generalizable guidance for considering small color
di�erences. Degradation in small color di�erences is especially hard to measure—
errors are more likely to make a light and midgreen indistinguishable than a
green and an orange. Small color di�erences are key for encoding quantitative
values, a common case in visualization. E�ective quantitative encoding design is
challenging as color di�erences must be subtle, yet su�ciently distinct, especially
for ordinal or interval data, where datapoints are broken into discrete groups.

The second part of this dissertation explores methods for mitigating limitations
of color encodings in practice. It provides experiments exploring how designers
can construct visualizations that better support color identification tasks (Chapter
6). I will also introduce data-driven metrics for visualization design that allow
designers to account for the e�ect of viewing enviroments (Chapter 7) and mark
size (Chapter 8) for quantitative color encodings with minimal modifications to
CIELAB as currently used in visualization.



Part I

Designing for Visual Aggregation
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As the amount of visualized data increases, our ability to visually aggregate
information from multiple data values becomes increasing important to conducting
aggregate analysis tasks. Little is known about how visualizations can support
visual aggregation in practice. While recent evaluations have begun to consider
visual aggregation tasks, such as estimating averages [Gleicher et al., 2013b] or
correlation [Harrison et al., 2014, Rensink and Baldridge, 2010], these e�orts
focus on evaluating performance for specific designs. Designers can use these
findings to match complete designs to tasks, but it is unclear how well these
results can be used to guide new designs or to understand the limitations in
di�erent designs, especially as viewers aggregate over larger collections of values.

The visual perception literature o�ers a starting point for understanding how
di�erent components of visualization design might support visual aggregation. In
this chapter, I identify relevant theory from visual perception to understanding
visual aggregation in design and how di�erent designs might break down as
datasets grow. I then derive design inspiration from these perceptual theories to
address limitations in existing visualization designs using color.

To guide this discussion, I focus on two model problems in one-dimensional
data analysis (comparing gene sequences and time series data). The surveyed
findings show limitations in existing designs and point to color as an e�ective
channel for supporting aggregate judgments across large data collections. One
practical limitation for using color to support visual aggregation at scale is that
displays only have a fixed number of pixels that can be used to encode data. For
example, genomes often contain more genes than there are pixels available to
represent those genes. To address this limitation, I will present a method for
aggregating one dimensional data informed by findings from visual perception.
This method tailors how aggregated data is represented to support di�erent visual
aggregation tasks.

3.1 Overview
Visual aggregation tasks require viewers to combine information across multiple
data points in order to complete a task. For example, in a scatterplot, tasks, such
as mapping symbols to a key or knowing whether a particular data value was
lower or higher than another, operate over individual values. But other types of
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task, such as the approximate mean or size of an entire cloud of points, compute
information about an entire set of points. Visualization allows an analyst to
complete these tasks using their visual system as opposed to explicitly computing
aggregate values.

Little is known about how accurately and e�ciently a viewer can complete
di�erent visual aggregation tasks. Findings from perception o�er some insight
into the statistical quantities that people can visually estimate from di�erent visual
features. However, these findings are generally based on small collections of simple
visual objects (e.g. circles, rectangles, oriented lines). As datasets grow, perceptual
challenges not considered in these studies might arise from visualization design.
These challenges might influence how well viewers can complete visual aggregation
tasks for many reasons, such as requiring viewers to aggregate information across
larger amounts of data. By understanding how the di�erent visual processes might
contribute to visual aggregation over large collections of datapoints, designers can
reason about what encodings might be most e�ective for certain tasks.

In this chapter, I use one-dimensional data analysis as a model problem for
understanding visual aggregation at scale. One dimensional data analysis is
commonly used across a number of domains. For example, time series data has
nearly ubiquitous applications for showing how things change or behave over
time. Advances in genomic sequencing technologies provide biologists with an
ever-expanding collection of data. Scientists can understand the similarities and
di�erences between genetic sequences by comparing the relationship between
genes in di�erent sequences to, for example, to understand evolution, to infer
common function, or identify di�erences. Exploring ranked data provides insight
into how performance or popularity change across collections. One dimensional
data provides a useful model problem for understanding visual aggregation at scale.
Not only is one dimensional data used in a breadth of domains, visualizations
of one dimensional data must support visual aggregation as datasets grow both
in terms of the number of data sequences and the length of those sequences. I
anticipate that many of these findings will be relevant to other applications and
will provide preliminary evidence of this generalizability in Chapter 5.

Statistics has explored how designers can computationally analyze one di-
mensional data. However, these analyses are often di�cult to comprehend and
generally focus on questions about the data that the analyst must formulate in
advance. Visual exploration provides a greater degree of flexibility in exploring
information, but it is currently an analytical bottleneck—while current approaches
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are useful, they have di�culty scaling to the larger datasets becoming available.
Understanding how viewers perceive information in a visualization can highlight
scalability limitations in existing designs and inform new systems that better scale
to modern datasets. In this section, I generate an understanding of how the visual
system might process a data visualization, focusing on applications in time series
and whole genome alignment data.

Sequence comparison is a fundamental task in the biological sciences. Whole
genome alignment supports sequence comparison by matching sets of related genes
across a collection of genomes. Scientists can use this matching to understand
the similarities and di�erences between genetic sequences by comparing the
relationship between genes in di�erent sequences. These tasks allow scientists
to, for example, understand evolution, to infer common function, or identify
di�erences. Sequence tasks may also be computed at di�erent scales, many of
which require visual aggregation to complete. Because the sequences are too long
for manual examination, scientists rely on alignment tools that automatically
identify subsequences that match between the sequences being compared. Tools
for visualizing these alignments are commonly used in performing sequence
comparison.

Whole genome alignment comparison provides an interesting model problem
for understanding visual aggregation as it relies on categorical data (comparing
genes). A variety of approaches for displaying and exploring alignments exist, and
have been incorporated into a wide variety of tools (see Procter et al. [2010] for a
survey). These designs generally fall into three categories: dot-plots comparing
two genomes, synteny views comparing a handful of genomes to a reference, and
connected alignment visualizations.

I focus on connected alignment visualizations as they o�er the greatest scala-
bility of these approaches in terms of both number of sequences and number of
supported tasks. These visualizations represent whole genome alignment data
by drawing physical connections between corresponding genes, with genomes
arranged as parallel tracks (Fig. 1.2a). Connectivity explicitly encodes the re-
lationship between two genomes, creating oriented lines that encode how these
genes change position and value in the dataset similar to a parallel coordinates
plot. However, these displays only allow biologists to explore up to ten genomes
simultaneously. New designs are required to support the larger datasets that are
of increasing interest to biologists.

Time series analysis is an extremely common form of data analysis and provides
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a model problem for visualizing quantitative one-dimensional data. While many
methods have been proposed for visualizing time series data (see [Aigner et al.,
2008] for a survey), line graphs and their derivatives remain the canonical method
of visualizing time series data. Line graphs encode quantitative data using position.
For this discussion, I focus on juxtaposed line graphs due to known limitations in
using superimposed lines for visualization ([Javed et al., 2010]).

One issue with position-based (e.g. line graphs) or connection-based (e.g.
connected alignment visualizations) is that they tend to become too complex to be
e�ective as the data grows. At some point, without substantial reductions in the
data domain, these methods no longer support e�ective analysis. For example,
connection-based whole genome alignment approaches are limited to roughly ten
or fewer genomes at once before the display is too cluttered to read e�ectively. In
line graphs, reducing the height of a line reduces the fidelity with which data can
be represented and compress the data enough to reduce legibility.

In this chapter, I identify relevant theories from perception to understand these
limitations for position and connection in one-dimensional data analysis and use
these theories to drive four novel designs using color to support aggregate visual
analysis tasks. To do so, I first organize literature on how complex displays are
interpreted into four components of perception for visualization design (pop-out,
summarization, visual search, and visual clutter) and discuss their ramifications
for visualization. I describe how these principles are relevant in current visualiza-
tion approaches, either in terms of how these encodings might facilitate visual
aggregation tasks or in identifying scalability limitations in current approaches.
From these limitations, I explore the potential benefits of using color for facilitating
visual aggregation and scalability in one-dimensional data analysis and propose a
method for supporting scalable visual aggregation in one-dimensional data.

While these components by no means represent all aspects of perception, for
example there is no discussion of attentional selection or crowding, I believe they
are su�cient to characterize the scalability limitations in existing one-dimensional
visualization approaches and provide a theoretical grounding for the utility of color
for visual aggregation tasks. This is by no means the first application of findings
from perception to inform visualization—surveys (e.g. [Healey and Enns, 2012b])
have outlined potentially useful findings and frameworks (e.g. [Rensink, 2014])
theorize how these findings may be applied—but it is the first to use perception
to consider how designs might support visual aggregation as datasets scale. The
intention of this section is not to identify the optimal encodings to support di�erent



22

visual aggregation tasks. While the discussion here might help guide such an
exploration in the future, it is beyond the scope of this work. Instead, I explore
where existing approaches break down and why color might provide a promising
alternative for overcoming these limitations.

3.2 Considering Perception for Visual Aggregation
The study of human perception has had wide ranging impact on the design of ef-
fective visualizations (see Chapter 2 for examples). In particular, perception helps
designers understand what the visual system can and cannot do with di�erent
kinds of visual information. The perception literature helps us understand limita-
tions in visual processing, design cases that avoid them, or work most e�ciently
within them.

Here, I focus on ideas from perception that are directly relevant to creating
scalable one-dimensional data visualizations that facilitate visual aggregation
tasks. I have organized these ideas into four categories of visual processing
relevant to data visualization. Each of the following sections identifies a category
of visual processing, considers how relevant findings may explain limitations
in the model designs in sequence comparison (connected alignment) and time
series analysis (juxtaposed line graphs) discussed in the previous section, and
explains how color may better facilitate processing in each category at scale.
These explanations are supplemented by an example image showing a connected
alignment visualization of small set of genomes (generally two) and colorfield
visualization that encodes a similar structure over a larger number (seven to one
hundred) of genomes.

3.2.1 Pop-Out

The visual system processes much of the information in a visualization before
a viewer actively searches a display. The visual processing that occurs at first
glance allows a viewer to rapidly identify targets in cluttered environments and
also ascertain the gist—roughly the summary visual structure—of a scene to help
guide active visual search. The visual system is able to process this preattentive
visual information extremely e�ciently [Wolfe, 2001].

These processes allow certain visual features to “pop-out” of a display. Pop-out
e�ects have been explored in detail by the perception community (see [Healey and
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Figure 3.1: Pop-out processing helps more readily distinguish highly conserved
regions when they are mapped to bright colors than a series of orthology lines.

Enns, 2012a] for a summary), and are often used in the design of visualizations
[Ware, 2008]. Pop-out is of great utility for visualization as it can be leveraged
to direct viewers’ attention to important information (i.e. the viewer will not
necessarily have to actively search to find important values).

Visualization designers can take advantage of this process by mapping impor-
tant information to salient visual features. The visual system collects structural
information to form a “spatial envelope” that encodes the most salient aspects of
a display. High contrast and irregular regions are generally thought to be salient,
implying that these regions are more likely to be the targets of attention and
more likely to pop-out [Alvarez and Oliva, 2006]. It then becomes far easier to
find desired objects in the scene, reducing visual search times and cognitive load
[Wolfe, 2001], especially as the amount of data visualized increases. Creating
and leveraging pop out in data visualization has been extensively explored, and
is often used for tasks such as highlighting important data values. However, as
the size of the data increases, e�ectively manipulating preattention can make it
easier to locate important information, such as outliers.

There are many limits to the kinds of visual queries that can pop-out preatten-
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tively. For example, the ability to distinguish between conjunctions of properties
or find multiple targets are limited, but these features stand out more as the
contrast between the target datapoints and remaining data increases [Duncan
and Humphreys, 1989]. Further, increasing the saliency of certain data values
increases the likelihood that specific data values will be identified preattentively
[Nothdurft, 1993], but can also lead to search asymmetries: finding salient targets
becomes e�cient, but finding nonsalient values becomes more di�cult (see Wolfe
[Wolfe, 2001]).

Application to One-Dimensional Visualization

Pop-out can help analysts more readily find interesting elements, structures, or
sequences in one-dimensional visualization. In connected sequence alignment
visualizations, there are many possible ways pop-out might be able to facilitate
visual aggregation by helping identify how large sections of material moves about
in di�erent sequences. For example, certain kinds of line crossings can pop-out
and correspond to interesting features in the data, such as large regions where the
order of genes has been reversed ([Enns, 1986, Fiorentini, 1989], Fig. 3.3). Unique
orientations of the connecting lines can also pop-out to reveal locations where a
motif (repeated pattern of genes) has been disrupted [Fiorentini, 1989, Haroz and
Whitney, 2012]. However, this pop-out e�ect arises serendipitously—orientations
and line crossings are determined by the data rather than the designer—and does
not scale well. Pop-out in connected alignment visualization is limited by the
number of elements compared—it can easily be canceled out by other connections
crossing the same space as the preattentive connections. These residual crossings
may clutter the salient connection or junction, inhibiting pop-out (see Section
3.2.4).

In time series analysis, high peaks or low valleys in line graphs may be salient
due to their relative position and size. These features can aid visual aggregation
tasks that involve identifying extreme values within the data. However, this e�ect
likely does not scale well to larger numbers of sequences—as more sequences are
compared, the space dedicated to a graph will likely shrink accordingly. As a result,
the di�erences in position and size decrease in magnitude, making the pop-out
less salient. Increased numbers of sequences may also introduce variability in
defining these “peaks and valleys,” potentially reducing their ability to pop out
despite salient local contrasts.

With color, salience can be achieved relatively robustly. Color mappings can
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be selected to make certain groups of genes or values of a certain magnitude
preattentively stand out. While, as in the line graph case, size can reduce the
contrast of a color value, color facilitates a wider degree of control over salient
di�erences—a designer can simply design a color ramp with a larger dynamic range.
Current systems often take advantage of preattentive pop out via highlighting and
matching color maps to data distributions [Tominski et al., 2008].

Color pop-out can also be leveraged to detect large scale pattern changes. Since
attention capitalizes on spatial regularities in the data, irregular patterns in spatial
organization can attract initial attention toward these regions of the visualization
[Fiorentini, 1989, Haroz and Whitney, 2012]. While these spatial e�ects can be
manipulated to highlight certain relationships within the data, including regions
where data patterns are inverted (e.g. a gradient reversal) or where continuous
patterns are interrupted (e.g. a gradient disruption).

However, the use of controlled schemes must be done with caution. Mauve
[Darling et al., 2004] employs a color scheme that causes pre-attentive association
of unrelated regions: color can reinforce the orthology shown by connectivity, but
does not encode it completely. Unintended saliency can slow visual search for
other features [Nothdurft, 1993], such as tracing edge crossings. This can be
overcome by choosing color mappings that map semantically related content to
similar colors.

Further, a designer does not often know a priori what data is significant to the
viewer. Making on piece of information salient can introduce search asymmetries—
search for salient data values becomes easier, while finding non-relevant data
items becomes more di�cult. However, with color, these asymmetries can often
be overcome by allowing the analyst to specify the information they are interested
in, whereas with connection and position, preattentive features generally arise as
a result of the data, not of the visual mapping.

3.2.2 Summarization

Early visual processes provide additional value for visualization beyond pop-out.
For example, the visual system can create rapid statistical summaries of a scene
at first glance. Prior to attention actively engaging, the visual system creates a
coarse representation, or gist, that identifies regions of interest that attention will
be directed to in the search. The gist provides a set of prior probabilities that guide
navigation when viewers actively explore a scene [Oliva, 2005]. In this process, the
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Figure 3.2: Visualizations that support the low-resolution processing of visualized
data can orient the viewer as to the overall data trends without requiring their
explicit attention. For example, large scale patterns in data are more meaningfully
averaged when data is encoded using color (top) instead of connection (bottom).

visual system is able to aggregate collections of data together [Balas et al., 2009].
These collections are internally represented as a set of ensemble statistics, such as
the mean and variance, that describe summary properties of the collection [Ariely,
2001b]. These statistical summaries are collected both before attention is engaged
(e.g. during gist processing [Oliva and Torralba, 2006]) and also in regions outside
of the focus of attention (e.g. in the periphery [Freeman and Simoncelli, 2011]).

If a display is designed correctly, these ensemble statistics allow the viewer
to access low-resolution summary information even without having to explicitly
attend to all regions of the display. Summarization, if supported, estimates
many aggregate statistical properties of a dataset, such as the mean [Ariely,
2001b] or variance [Morgan et al., 2008] of a group of visual features. These
statistics can be used to make sense of large collections of information. For
visualization, summarization processes can estimate coarse information about
a visual encoding and likely helps in many visual aggregation tasks, such as
computing the relative layout of a collection of points [Gleicher et al., 2013b], and
some basic statistical properties such as mean [Correll et al., 2012b], variance,
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and correlation [Harrison et al., 2014, Rensink and Baldridge, 2010]. This is
valuable as often a scientist needs the context, not the details, of objects outside
their immediate focus. Summarization facilitates visual aggregation by grouping
related collections of items together into a series of summary values.

Applications to One-Dimensional Visualization

To e�ectively leverage summarization in visualization, displays must be designed
so that their low-resolution summaries are meaningful. For example, summariza-
tion can be crudely approximated by blurring a dataset to generate rough local
averages. When blurred (which is similar to what summarization e�ectively does),
a connected alignment visualization becomes a gray mass, while colorfields retain
useful features, such as large color gradients (see Figure 3.2). However, designs
leveraging color average to meaningful structures.

Many aspects of connected alignment visualizations may be detrimental to
visual summarization. At a low level, the visual system is adept at generating
summary information about orientation (e.g. [Choo et al., 2012b, Morgan et al.,
2008]). However, in connected displays, oriented lines overlap with one another,
which may complicate this averaging. The large numbers of small lines connect-
ing matches in synteny and parallel alignment views simply vanish or merge
when considered at low resolution. Edge bundling might help, but other, more
summarization-friendly designs might be needed.

Further, with connected displays, connections are often drawn only between
adjacent sequences. This means that any summary judgments that can be inferred
from the orientation of the di�erent connecting lines (e.g. estimating how genes
move around on average or how many genes are conserved between sequences) are
entirely dependent on the ordering of the sequences in the visualization. Inferences
comparing sequences that are not colocated require the viewer to e�ectively “daisy-
chain” the results of a visual aggregation task across all of the sequences between
the compared sequences.

For time series, line graphs might also challenge summarization mechanisms.
Line graphs rely on di�erent visual features to encode information: individual
points are connected to form shapes and changing in the height of the shape
encode values. The visual system is capable of computing ensemble statistics
over individual points e�ciently (see [Alvarez and Oliva, 2009] for perceptual
evidence and [Gleicher et al., 2013b] for evidence from the visualization community).
However, the complex shape of line graphs are processed in higher-level visual
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areas that may not be readily summarized across multiple graphs in a useful way.
There is no evidence that the visual system can e�ciently average across height
per se. In fact, prior evidence suggests that global shape perception, necessary
for summarizing line graphs, is perceptually ine�cient [Wolfe and Bennett, 1997].

Line graphs may instead rely on the visual system’s abilities to summarize
size [Ariely, 2001a, Chong and Treisman, 2003] as a proxy for height. To make
use of this ability, the visual system must segment out relevant visual features
from the global shape of the graph. However, this segmentation operates over
rigid constraints, and the observer may not be able to arbitrarily summarize data
in a line graph [Franconeri et al., 2009, Singh and Ho�man, 1997]. Chapter 4
evaluates how well line graphs support tasks involving summarization.

The ability of the visual system to readily summarize color [Bauer, 2010]
makes it a promising encoding for supporting visual aggregation tasks. The visual
system’s ability to summarize dense fields of color into meaningful aggregates
is something that artists (e.g. pointilism [Kleiner, 2013]) and display designers
(e.g. pixels in a Bayer mosaic) have leveraged for decades and longer. More recent
evidence suggests that some aspects of color can be meaningfully summarized for
colors of larger areas [Bauer, 2010] and that these summaries can provide useful
structural information in early visual processing [Graham et al., 2009].

While color can be readily summarized by the visual system, some care must
be taken to compose these summaries correctly. For example, the visual system
summarizes this data in across both the vertical and horizontal dimensions
[Graham et al., 2009]. The rows and columns in a traditional heatmap may be
averaged together. In one-dimensional data comparisons, each data sequence is
a unique entity, but summaries may lump together data across sequences in a
heatmap. Separating di�erent sequences into independent tracks using empty
space can significantly alleviate this issue [Balas et al., 2009].

Perceived similarity of di�erent areas of a display might be a function of local
averaging [Graham et al., 2009]. If local averages are meaningful, such as for colors
whose perceptual di�erences align with value di�erences, then ensemble statistics
can help viewers compare these clusters. If the averages are not meaningful, for
example, if color di�erences do not align with value di�erence, local averages may
not provide a useful comparison.

Additionally, color mappings should take advantage of the visual system’s
abilities to summarize color. As summaries e�ectively statistically aggregate
colocated visual features, colors that are perceptually close should encode similar
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Figure 3.3: Connections between related data impose a non-linear search order to
the data, whereas a conventional reading order supports a more natural search
pattern and allow large component color fields to be associated preattentively.

values to e�ectively leverage summarization for large collections of data. This
constraint supports pre-attentive pattern finding and summarization: large fields
of colors can be matched and texture patterns suggest relevant visual relationships
(see Figure 3.1). For example, reversal of color gradients when color di�erence is
proportional to value di�erence readily communicates inversions. Summaries of
categorical colors, where color di�erence does not map to data, may help identify
the relative numerosity of various values [Healey et al., 1996], but the average of
these colors is meaningless.

3.2.3 Visual Search

When a viewer is looking for a specific datapoint (or set of data points) that do not
readily pop-out, they must instead search for them. Visual search occurs when
a viewer must scan their attention over the scene to search for targets. Without
perceptual aid, search tasks can be cognitively demanding and time-consuming
[Alvarez et al., 2007]. By designing visualization systems that cooperate with
perceptual search mechanisms, viewers can more easily process the display for
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more rapid and e�cient visual search.
Search is initially guided by pop-out and structural summarization—these

processes identify areas of potential interest and attract attention prior to search.
Visual search is key in constructing e�ective visualizations as supporting visual
search makes it easier for the viewer to actively find interesting information. If the
search target is known a priori and easy to formula, interactive searches can be
used. However, in visual aggregation tasks, the search target is defined relative
to other values in the collection, such as identifying co-located clusters of values
with high averages or searching for the local maxima of a subset of data values.

E�ectively leveraging summary processes can facilitate visual aggregation
tasks involving search by establishing a low-resolution contextual map of visual
encodings. This ensures that the visual system can readily identify objects of
importance during early visual exploration. For example, large discontinuities can
pop-out, helping the viewer determine where to direct their attention (Fig. 3.3).
When the structure of a visualization promotes familiar search strategies, such as
preserving a left-to-right reading order [Arnheim, 1976] or using a regular layout
[Alvarez et al., 2007], viewers are generally more comfortable and more e�cient at
finding information in a visualization.

Applications to One-Dimensional Data Visualization

Many interaction techniques, such as text-based search and highlighting, can
facilitate visual search when a target is known and well-defined. However, in
visual aggregation tasks, a search target might be a single value defined based
on its relationship to other points in a collection, such as the median value of a
collection, or might be a collection of values, such as a spatial cluster with a high
or low average value. Visualization can support e�ective visual search for these
tasks by using regular layouts, visual features that are readily summarized, and
methods that colocate meaningful data.

In connected alignment visualization, as mentioned previously, deriving useful
summaries is di�cult (see §3.2.2 for details). However, connected lines also
impose a non-linear reading order to trace the movement of genes throughout
a dataset. This may significantly inhibit search tasks by creating a secondary
search structure that does not follow a traditional reading order even for salient
connected patterns, such as the regular crossing pattern in Figure 3.3.

Line graphs can preserve a single left-right reading configuration, allowing the
viewer to methodically scan over the data in a logical ordering, thereby reducing
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the cognitive cost of visual search. However, the presentation of data in a line
graph is fairly rigid—the order in which the data is arranged is firmly coupled to
the data axis that is being visualized. The visualization is limited in its ability
to reorganize data along the x-axis to create new clusters, impairing the types of
visual queries a viewer is able to make by constraining the proximity between data
points.

Color mappings are not necessarily bound by positional constraints (other than
that they must have a relatively unique position). While finding specific values
mapped to color may be less e�cient for low-level search tasks [Cleveland and
McGill, 1984] (a limitation addressed in the second part of this dissertation), the
e�ciency with which color can be summarized coupled with flexible positions are
extremely beneficial for search tasks involving visual aggregation.

To e�ciently leverage color for visual search in one-dimensional data applica-
tions, color tracks should follow a conventional left-right or top-bottom reading
order. Dividing data sequences using white space, as discussed in §3.2.2, can
reinforce this order.

To help form new clusters that facilitate more flexible aggregate search tasks, the
ordering of colors within a data sequence should be somewhat flexible ([Slingsby
et al., 2009]). While this flexibility allows for complex visual queries, it also can
potentially inhibit search by placing data in an unconventional order. Using
coordinated views or animated transitions for rearrangement will reduce the
number of new searches associated with changes in viewpoint or display. Flexible
orderings to the data can also benefit from the pairing of conventional and novel
views (e.g. the approaches described in [Meyer et al., 2009, Peeters et al., 2004])
and facilitate comparison by colocating values of interest ([Wickens and Carswell,
1995]). Since analysts know how to navigate in conventional models, they can more
quickly identify points of interest, which can then be used to map to unfamiliar
views. This reduces the cognitive load of search when data is presented in novel
clusters. By providing visual coordination mechanisms, exposure to existing tool
can help simplify search in novel viewpoints.

3.2.4 Visual Clutter

Visual clutter occurs when item quantity, encoding, or layout hinders performance
in search tasks [Rosenholtz et al., 2005]. Clutter impairs the perceptual system by
bogging down cognitive processes and slowing visual search. In data-processing
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Figure 3.4: Visual clutter can significantly inhibit perceptual processing by adding
additional visual objects to a scene. Orthology lines quickly become cluttered,
with multiple lines crossing in unstructured ways. Clutter in color instead forms
a dense texture in regions with high numbers of sequence events.

tasks like sequence comparison, clutter reduction by adjusting semantic data
granularity (e.g. visualizing the data for weeks instead of days) often proves far
more e�ective than simply removing data and still preserves the overall dataset
[Rosenholtz et al., 2007].

In addition to slowing visual search, clutter can impede how accurately viewers
conduct di�erent visualization tasks. Clutter can lead to errors in estimating
visualized values and also increase the confidence with which values are estimated
[Baldassi et al., 2006]. This misestimation may lead to problems when visually
aggregating information across a cluttered display.

Application to One-Dimensional Visualization

Clutter is a common concern in visualization, so much so that models of clutter
in visualization have been developed [Lohrenz et al., 2009]. As the amount of
data a design must visualize increases, clutter becomes increasingly important.
More data generally correlates with a larger number of marks. How the data is
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encoded likely plays a significant role in how quickly visual clutter accumulates.
Connected alignment visualizations and juxtaposed lines graphs can become
cluttered in di�erent ways. However, with color, the visual system’s abilities to
readily summarize color may be beneficial for managing clutter.

Clutter is a substantial problem for connected visualizations. As the number of
connections between adjacent genomes increases, the amount of visual clutter is
likely to increase. Greater numbers of connections quickly form tangled webs that
make connections di�cult to trace (Fig. 3.4). While techniques like edge-bundling
can help reduce clutter [Meyer et al., 2009], they substantially reduce the fidelity
of represented data and their e�ectiveness is heavily dependent on the regularity
of the connections—bundles generally preserve connections of similar orientation.

Alternatively, juxtaposed line graphs do not necessarily su�er from the same
clutter issues as connected visualizations. However, line graphs become in-
creasingly cluttered as the amount and variability of data in a single sequence
increases—the line converges to, in essence, a dense scribble of data as points
are pushed closer to one another. Low-pass filters and other kernel-based pro-
cessing can smooth the data to reduce such issues. These reductions operate
in data-space, making it di�cult to control the amount of visual simplification
introduced for a given visualization.

Color encodings, like juxtaposed line graphs, also benefit from a lack of the
overlapping encodings which cause clutter in connected displays. However, in
color, the visual system’s ability to readily aggregate information can actually
leverage color to form data “textures” that are readily parsed. Large amounts
of data clutter form textures that suggest regions with potentially interesting
variations.

However, as in with line graphs, representing one dimensional data using
color is still problematic once the density of the dataset exceeds a certain level
(e.g. once there is more data than pixels to visualize that data). The flexibility of
color encodings makes it possible to overcome this limitation—we can manipulate
the position and representation of encoded data values in order to better fit the
visualized data on the screen. In the next section, I will discuss a technique that
addresses this limitation for one-dimensional data visualizations using color. This
technique builds upon these four processes discussed in this section (pop-out,
summarization, visual search, and visual clutter) to facilitate visual aggregation
tasks at scale.
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3.3 Designing Aggregate Visual Encodings
The amount of available data continues to grow, creating demands for visualization
tools that can scale to larger datasets and the challenges they bring. Constructing
such tools will require facing a number of challenges, including the engineering
issues of handling immense amounts of data. The visual designs used by such
tools must also be carefully planned to remain e�ective as the data grows more
complex.

The previous section discusses how perception can inform methods for repre-
senting data that better facilitate visual analysis at scale, especially when those
analyses must consider multiple values simultaneously. This discussion suggests
that color is extremely useful for facilitating data analysis at scale. However, many
datasets in one-dimensional analysis have sequences or series that are longer the
horizontal spans of pixels on a conventional display. Even if we could fit all of the
data on the display, maximally dense displays may be cluttered and di�cult to
interpret, and the visual system can only process a limited amount of information
at any given time. Using color alleviates some of this complexity, but is still limited
by the number of pixels on the display.

To manage this complexity for one-dimensional data visualization, visualiza-
tions must explicitly aggregate in the horizontal direction. Several approaches to
overcome screen space restrictions involve computationally reducing the dataset,
as in [Dupont and Plummer, 2003, Keim et al., 2007, Lampe and Hauser, 2011,
Papadimitriou et al., 2013]. However, these methods require knowing and quan-
tifying information relevant to the task a priori. These techniques do not o�er
much control over what specific information is thrown away in the course of the
aggregation—they operate over the data abstractly to facilitate data reduction, not
semantically to support a given set of analysis tasks. Alternatively, aggregation
approaches that reduce data based on semantic structures, such as cliques in
graphs [Dunne and Shneiderman, 2013] and di�erent levels of hierarchy [Elmqvist
and Fekete, 2010], abstract structural information from the dataset into compact
glyphs. Time series visualizations often use this approach to aggregate information
over meaningful time spans ([Lammarsch et al., 2009]). Visualization techniques
from biology allow the biologists to collapse large regions within the sequence,
encoded as the dominant value within that region ([Slack et al., 2004, Vehlow
et al., 2011]).

Data in these techniques is aggregated over a predefined region and condensed
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(a) Averaging (b) Robust Averaging

(c) Event Striping (d) Color Weaving

Figure 3.5: The di�erent aggregation schemes available in Sequence Surveyor. (a)
Averaging reveals high-level trends in the blocks. (b) Robust averaging removes the
influence of outliers from the average, resulting in smoother color fields conveying
the dominant trends in the data. (c) Event Striping highlights outliers in the data.
(d) Color weaving depicts the distribution of genes in the blocks.

into a single, predefined value. As a result, data that may support other analysis
tasks is abstracted away. Here, I propose a screen space method using color
to aggregate one-dimensional data based on task (Fig. 3.6). This method first
maps the data in a sequence to visual space, creating a fixed mapping of pixels to
data values. Then contiguous datapoints are grouped across fixed pixel windows,
creating a series of screen-space data “blocks” of roughly uniform size. Data
within these blocks is then reduced locally based on the task specified by the
analyst and mapped to a glyph that uses color to communicate the reduced data
values. The glyphs have been designed to support the specified task based on the
perceptual processes discussed in the previous section.

We provide four aggregate glyphs that encode blocked data, shown in Figure
3.5: averaging, robust averaging, event striping, and color weaving. By providing
di�erent aggregation filters, di�erent properties of the data can be explored at the
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Raw Sequence 

Sequence Blocks 

Aggregate Representation 

Figure 3.6: Blocking first maps data to visual space, and divides the corresponding
data into uniform, screen-space bins. Once these bins are composed, the data
within each bin is reduced locally and encoded using a perceptually-inspired glyph
designed to support a specific type of visualization task.

overview level without having to recompute the display properties of the entire set.
Drilling deeper into these aggregated blocks can be accomplished with zooming
(§5.1.6). Each of these glyphs is defined as follows:

• Averaging (Figure 3.5a) colors blocks by the mean of the component gene
color values. This glyph summarizes overall trends in each block, as seen in
Figure 5.11b, using a single color. This encoding minimizes visual clutter
by greatly reducing the overall visual complexity of the dataset, allowing
the viewer to readily infer summary information about overall dataset and
helping areas of unusual data values pop-out.

• Robust averaging (Figure 3.5b) provides a statistically more robust visu-
alization of the data. This technique averages data within a block more
intelligently by removing the visual contribution of outliers. This encoding
accomplishes many of the same perceptual goals as averaging, but does
focuses on the most dominant patterns in the data.

I compute the robust average by averaging the color values within one mean
absolute deviation of the inner quartile range of the block. While I define
outliers as values outside of a block’s IQR in this application, any definition of
outliers can be used. In practice, designers should choose whatever method
best fits the data and domain.

• Event striping (Figure 3.5c) flags outliers and changes to trends in a block
as “events.” Events are drawn as pixel-wide vertical stripes at the relative
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location of each event within the block. This prioritizes outliers within the
data by physically enlarging these regions to highlight their existence, which
may otherwise be lost to more dominant trends like in Figure 5.10b. Event
striping helps to make outliers more salient and more likely to pop-out.

When there are more values in a sequence than pixels to represent those
values, the space between subsequent events encodes the average of values
between the events. This both contextualizes the outliers in the active gradi-
ent and helps support aggregate summarization tasks. If there are enough
pixels to represent all values in a sequence, every value in the block is drawn
as a single stripe. This allows viewers access to all of the data in a sequence.

• Color weaving (Figure 3.5d) randomly permutes data and maps the resulting
information at the pixel level, similar to the overlay technique presented by
[Hagh-Shenas et al., 2007]. The resulting glyph is capable of displaying as
many data values as the pixel area of the block (as opposed to the pixel
width of the block in more conventional approaches). Randomization helps
avoid misleading striping artifacts that may be introduced through repeating
ordered data for blocks where the number of data values is less than the
pixel area of the block.

This approach takes advantage of the visual system’s abilities to summarize
data values to support multiscale inference into the distribution of values
within a block. In many cases, all of the information within the block is
communicated, but breaking local structures may facilitate visual averaging.
Actively attending to a block can then act as a form of zoom—the visual
system can extract ensemble statistical values from unattended blocks, while
focusing on data within the block can reveal more precise, pixel-level infor-
mation.

Screen-space grouping allows a great deal of flexibility in how data is ordered
within a sequence. Aggregation is independent of the horizontal data dimension
and also provides a fine degree of control over how finely the aggregation is applied.
The width of a block can be determined in two ways: by a user-defined parameter
and by gaps in data sequence. Allowing the user to define the maximum block
width within a sequence in pixels is similar to specifying a “bin size” parameter in
a histogram. This provides the analyst with fine-grained control over the visual
complexity of a display—smaller blocks mean less data reduction.
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However, these windows only operate over contiguous data. In some cases,
data at a certain position in screen space might simply be missing. For example,
a data sequence might be ordered such that column positions map to values, like
when comparing genomes to a reference. A gap can arise due to an absence of that
value in a sequence. Alternatively, the data might be incomplete and no measure
exists for a particular position or time point. Naturally-occurring gaps in the data
positions that are at least one pixel wide prematurely break a block grouping,
creating a visible gap in the encoding. This induced irregularity allows the viewer
to see significant gaps in the data at an aggregate level while not overemphasiz-
ing small gaps which would otherwise be perceptually indistinguishable in an
unaggregated overview. This gapping helps support data clustering by treating
physically separate clusters as independent blocks, preserving patterns local to
each block.

Further, by aggregating information locally, the process preserves interest-
ing local variations—all reduction criteria is done agnostic of the global data
distribution. As a result, data is tuned to the local neighborhood of the data,
preserving interesting pockets of variation. This also supports more semantically
complex reductions, such as the ability to define an outlier with respect to the
local sequence neighborhood. This helps to identify and highlight variations that
break local gradients, but may otherwise conform to the global data distribution.

3.4 Discussion
This chapter presents a theoretical basis for using color to support visual aggre-
gation tasks using model problems from one-dimensional data analysis. In this
chapter, I have introduced an organization for leveraging perception to reason
about scalability and visual aggregation, outlined a perceptual argument for color
as an e�ective encoding for visual aggregation tasks, and presented a visual
method for task-driven aggregation of one-dimensional data. These contributions
collectively illustrate how color can be used to design visualizations that are both
scalable and readily support analyses that combine information from multiple
datapoints simultaneously.

While I use these contributions to motivate color as an e�ective channel for
visual aggregation, this discussion represents a starting point for considering the
perceptual basis for visual aggregation tasks. The survey of perceptual processes
is by no means exhaustive, but instead intended to represent processes that
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are critical to aggregate analyses of scalable visualization, at least one of which
(summarization) had not been explicitly considered by visualization designers
prior to this work.

Additionally, the arguments presented here are based on a mapping of theories
from perception which do not consider many of the nuances of data visualization
tasks. Experimental validation is critical for verifying how well these inferences
translate to visualization. Some of this validation will occur in the next chapter.

The aggregation methods presented in §3.3 do not necessarily support all
possible visual aggregation tasks. I instead see these glyphs as representative
of an important class of statistical tasks. A broader consideration of visual
aggregation tasks as well as their links to psychology are outlined in on-going
work.
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The previous chapter introduced a method for task-driven aggregation of one-
dimensional data. This method and the accompanying task-driven glyph designs
(averaging/robust averaging, color weaving, and event striping) are inspired by
findings from perceptual psychology. While perception explains how the visual
system might process encoded data, these explanations are derived to understand
the mechanisms of the visual system. The results generally describe how the
visual system processes simple stimuli over short durations and under heavily
controlled conditions. These experiments are not reflective of visualizations, which
often have large amounts of complex data explored over arbitrary lengths of time
and under a plethora of conditions.

In this chapter, I validate the design considerations and method presented in
Section 3.3 for visualization. This study considers how color and other properties
of visualization design help viewers perform di�erent statistical visual aggregation
tasks. I combine prior results from perceptual science and graphical perception to
suggest a set of design variables that influence performance on various aggregate
comparison tasks and describe how choices in these variables can lead to designs
that are matched to particular tasks. I focus on statistical tasks for exploring time
series data as it is more familiar for the general viewer than genomics analyses.
Aggregate designs are blocked semantically (at the level of months). I use these
variables to assess a set of eight di�erent designs, predicting how they will support
a set of six aggregate time series comparison tasks. A crowdsourced evaluation
confirms these predictions. These results not only provide evidence for how the
studied visualizations support di�erent tasks, but also provide design guidance
into how the discussed design variables can guide new visualizations well suited
to various tasks.

4.1 Overview
Visualizations can support judgments over collections using two strategies: they
may present raw data requiring the viewer to determine the aggregate properties,
or they may compute these aggregate properties and present the derived data. For
example, if the designer knows that the viewer is trying to find the maximal value
in a series, they may either explicitly compute and encode the maximum, or choose
a design that facilitates visual search for the maximum. While such computational
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(a) Visual variables can in-
fluence task performance -
positional encodings (left)
help viewers make point
comparisons, but color en-
codings (right) help view-
ers make summary com-
parisons over regions of a
series.

(b) Mapping variables
can influence task per-
formance - overlaying
statistical quantities ex-
plicitly on the original
series (right) is beneficial
for tasks where extracting
the quantities visually
would be di�cult without
assistance.

(c) Computational vari-
ables can influence task
performance - dividing
a series into discrete,
task-relevant blocks (right)
is beneficial for aggregate
summarization tasks.

Figure 4.1: We can infer how well a particular encoding support a given task
by examining the interplay of visual variables (what visual channels are used to
encode value), mapping variables (which raw or derived quantities are visualized),
and computational variables (how these quantities are computed).

aggregation can be precise, it also requires a number of specific preconditions to be
met. For example, it requires knowing a priori which properties are relevant to the
task. In contrast, visual aggregation relies on the capabilities of the viewer’s visual
system, necessitating visual encodings that allow for relevant properties to be
determined e�ectively. Computational and visual aggregation are compared more
thoroughly in Chapter 2. Both strategies require a good match between design
and task. However, aside from specific examples of designs that apply to specific
tasks, there has been little exploration of the trade-o�s in how various design
elements may apply to di�erent visual aggregation tasks. By understanding how
aggregation strategies combine with other design elements, we can better guide
the design and selection of visualizations to support aggregate comparison tasks.

The previous chapter outlines a number of perceptual theories that support
speculation about designing visualization to support visual aggregation, but
this speculation is not grounded in visualization, but rather in a more abstract
understanding of the visual system. In this chapter, I identify three key variables
in the design of visual displays, and explore their e�ect on viewers’ ability to carry
out various statistical aggregation tasks. Visual variables [Bertin, 1983] refer to
the visual channels used to represent the data values, such as color, position, or
orientation. Mapping variables refer to the selection of which particular properties
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of the data to display, for instance choosing to emphasize local outliers or creating
a derived dimension from existing data. Computational variables describe the
methods used to compress the data, such as whether a statistic is computed
continuously or segmented over discrete regions of the series. Since no one choice
of encoding will be appropriate for all tasks, and the tasks to be completed may
not be known a priori, understanding the relationship between these three design
variables and di�erent types of aggregate comparisons provides guidance into the
design of e�ective visualizations for broad sets of aggregation tasks.

As in the previous chapter, I base this exploration in the model domain of
time series analysis. I will present an evaluation (conducted with collaborators
in computer science and psychology) that evaluates how each of these variables
influences performance on six di�erent statistical tasks—three point comparisons
requiring a comparison of individual points within di�erent subsets of the data
and three summary comparisons that require viewers to combine data within
each subset. My results show that all three variables o�er robust predictions
about performance for these tasks. Figure 4.1 shows how consideration of these
variables might lead to di�erent design choices for di�erent tasks.

4.2 Informing Design through Task
These experiments focus on performance for a special form of visual aggregation
task, aggregate comparison tasks, which require comparisons between ranges of
points. This experiment measures performance for two specific classes of aggregate
comparison task: point comparisons and summary comparisons. Point compar-
isons require viewers to identify and compare points drawn from specific subsets
of the data, such as monthly ranges, whereas summary comparisons compare
values computed from entire ranges of the data, such as monthly averages.

I analyze performance on these tasks as a function of three design variables
that, based on the discussion in Section 3, I believe o�er predictive insight for
matching task and encoding: visual variables, mapping variables, and compu-
tational variables. These variables arise from the types of choices a designer
must consider when creating a visual encoding meant to deal with information
in the aggregate. While these variables do not attempt to define the full breadth
of encoding choices made by a designer, I believe that these design variables
help characterize the tasks an encoding supports and, by understanding the
relationship between variable and task, visualizations can be tailored to better
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support di�erent visual aggregation tasks.
Visual variables refer to the choices in low-level visual properties used to rep-

resent data, such as position and color [Bertin, 1983]. While graphical perception
results suggest what encodings may provide the most precise extraction [Cleve-
land and McGill, 1984], results on visual aggregation suggest that di�erent visual
variables may be better for statistical summarization [Correll et al., 2012a]. Color
is particularly promising for summary comparisons (see Section 3.2.2 for a justifi-
cation), whereas trade-o�s in position are promising for point-value comparisons
(see Section 3.2.3 for a justification).

Mapping variables refer to which aggregate properties are computed and pre-
sented. For example, a visualization may show the raw data, averages, or extrema.
The use of such computed aggregates allows the visualization to do work that
would otherwise need to be done by the viewer, and can o�er a degree of precision
that cannot be achieved mentally. However, these computed statistics are task
specific: the system must know which statistics are relevant to the viewer’s goals,
and avoid overwhelming the viewer with too many irrelevant ones. Mapping vari-
ables are more nuanced than simply encoding the “right” answer for a given task,
a statistic that is not directly relevant may still help the viewer by serving as a
benchmark for a related task.

Computational variables refer to how these aggregate properties are computed.
For example, a given statistic, such as mean, may be computed over discrete
ranges of the data or as a continuous moving average. For example, in Section
3.3, choosing to explicitly encode local averages reduces visual clutter in complex
data while still supporting aggregate inference in to the data. Some of these
choices allow the computation to fit the task, for example by blocking in groups
relevant to the task, but this requires foreknowledge of the task. Interaction is
commonly used to adjust computational variables to support tasks at di�erent
scopes. Mapping variables provide a direct way to manage the visual clutter of a
scene by controlling the granularity of information shown.

These design variables make explicit the choices in designing a visualization
that will a�ect the visualization’s applicability to specific tasks. They allow a
designer some predictive insight into how a proposed design may fit a set of tasks.
These variables conceptually align with the filtering and mapping stages of the
visualization pipeline [Card and Mackinlay, 1997] used to characterize visualization
designs. However, our approach di�ers as we seek to inform design using task by
characterizing explicit design choices rather than to more generally characterize
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visualization approaches. Further, the distinction between the granularity at
which each encoded statistic is computed (computational variables) and how these
statistics are encoded (visual variables) is important for constructing designs that
support di�erent varieties of aggregate tasks at di�erent granularities within a
series.

The next section outlines a range of existing designs (shown in Figure 4.2)
for displaying times series data using these variables to predict each design’s
appropriateness for a range of tasks. This provides both a validation of the
predictive power of these variables, as well as a better understanding of a set of
known tasks and encodings. Further, this provides some empirical grounding for
the claims made in Section 3.3—three of the proposed visualization designs are
derived from the aggregate glyphs designed to support visual aggregation at scale.

4.3 Hypotheses and Examples
Considering how each design variable is processed visually may help predict
how di�erent encodings support di�erent visual aggregate tasks. In particular,
each design variable independently allows us to make predictions about the
performance of di�erent visual encodings for various tasks:
H1: Visual variables that support preattentive summarization, such as color, will

better support summary comparisons for designs where aggregation is not done
computationally, whereas visual variables with higher perceptual fidelity, such as
position, will better support point comparisons.
H2: Mapping variables that explicitly convey relevant statistics (either the exact

task statistic or a benchmark statistic, such as the mean when estimating variance)
will support more accurate comparisons, but will still be limited by how each
statistic is computed and visualized.
H3: Computational variables that provide task-aligned discrete aggregation will

support more accurate aggregate comparisons than variables which are encoded
continuously by reducing the visual clutter present in the design.

I confirm these predictions by evaluating viewers’ abilities to accomplish six
aggregate comparison tasks for eight encodings for time series data. For each
task, I performed a between-subjects experiment to compare viewer accuracy
for each encoding. The tasks, detailed in the Section 4.4 section, include three
point comparison tasks (identifying the month with the largest value, smallest
value, and largest range) and three summary comparison tasks (identifying the
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(a) Line graph—
vertical position
encodes value.

(b) Modified Stock
Chart—line graph
with monthly highs
and lows (horizontal
bars) and 30-day
moving average
(green line).

(c) Box Plot—
monthly interquar-
tile range (box),
mean (horizontal
line), and extrema
(whiskers) are
explicitly encoded.

(d) Composite
Graph—bar chart
encoding the
monthly average is
overlaid on a line
graph of the raw
data.

(e) Colorfield—a ver-
tical stripe of color
encodes daily values
(darker green means
higher sales).

(f) Color Stock
Chart—each month
has 3 color blocks
encoding the
maximum (top),
mean (middle), and
minimum (bottom).

(g) Woven
Colorfield—the
colorfield’s pix-
els are randomly
permuted within
each month, creat-
ing discrete value
“blocks.”

(h) Event Striping—
smoothed data plot-
ted as a colorfield
with outliers over-
laid as vertical color
bands (e.g. end of
Sep, dark green).

Figure 4.2: Visual designs explored in this experiment. The first two rows of
encodings use position to encode value; the bottom two use color. Conditions
4.2d, 4.2b, 4.2c, 4.2g, 4.2f, and 4.2h calculate and display di�erent statistics at
the per-month scale, which requires prior task knowledge ( e.g. that the tasks
will be performed at the scale of months).

month with the highest average, spread, and outlier numerosity). The encodings,
detailed in the next sections, vary with respect to each design variable: primary
visual variable (position versus color), the set of mapping variables (value statistic
explicitly encoded, benchmark statistics explicitly encoded, and no explicit task
statistics), and the computational variable defining the continuity of the encoding
(continuous versus discrete). Figure 4.3 summarizes the performance predictions
made by each design variable for each encoding.

4.3.1 Position-Based Encodings

Line graphs (Figure 4.2a) are the canonical approach for visualizing time series
data using position. Position encodings support extracting exact values from a
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visualization [Cleveland and McGill, 1984]. However, prior theory suggests that
their ability to support summary tasks, such as comparing local averages, is
limited [Correll et al., 2012a]. A more detailed theoretical evaluation of line graphs
for visual aggregation is presented in Section 3.

Modified Stock Charts (Figure 4.2b) supplement summary judgments in
line graphs by layering a moving average over the original series. Extrema of
discrete regions are encoded using range bars. I anticipate that the presence of
the moving average will help with summary comparisons, albeit the continuous
mean aggregation may still limit value extraction from discrete regions. The
increased saliency of the extrema as discrete range bars will better a�ord minimum,
maximum, and range comparisons. However, the amount of information encoded
by the chart may cause issues of visual clutter.

For some comparison tasks, summary statistics may su�ciently summarize
the necessary information in a series. Box plots (Figure 4.2c) discretely compute
and visualize the range, interquartile range (IQR), and mean of the series for
each temporal region. The explicit encoding of these statistics may better a�ord
comparisons of the encoded statistics and reduces the amount of visual clutter in
the display, but does so at the expense of the raw data—it is impossible to derive
inferences beyond those explicitly encoded by the plot.

Composite graphs (Figure 4.2d) layer a line graph over a bar chart repre-
senting averages of discrete subregions. By explicitly mapping the mean value
aggregated over each month, this approach may enhance the viewer’s ability to
extract averages from the visualization without inhibiting their ability to extract
point-level information from the original series. Visually encoding the average may
also provide a benchmark statistic for comparisons requiring average extraction,
such as spread (average distance from the average).

4.3.2 Color-Based Encodings

Recent work demonstrates that color encodings, such as those used in colorfields
(Figure 4.2e), may better support average comparisons than position encodings
[Correll et al., 2012a]. Colorfields map each datapoint within a series to a point
on a color scale, creating a one-dimensional heatmap, and adhere to the design
constraints discussed in Sections 3.2.2 and 3.2.3. I anticipate that the perceptual
system’s ability to preattentively summarize color will support summary compar-
isons; however, colorfields will likely be less e�ective for point comparisons due to
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isons.

Line Graph

Composite Graph

Modified Stock Chart
Box Plot

Colorfield

Color Weaving
Event Striping

Color Stock Chart

M
ax

im
a

A
ve

ra
ge

M
in

im
a

Ra
ng

e

Sp
re

ad

O
ut

lie
r C

ou
nt

en
co

d
in

g

point comparison summary comparison

(b) Mapping Variable Pre-
dictions - Explicitly map-
ping statistics relevant to a
task (grey rows) will better
support comparisons, but
limit the breadth of possi-
ble comparisons.

Line Graph

Composite Graph

Modified Stock Chart
Box Plot

Colorfield

Color Weaving
Event Striping

Color Stock Chart

M
ax

im
a

A
ve

ra
ge

M
in

im
a

Ra
ng

e

Sp
re

ad

O
ut

lie
r C

ou
nt

en
co

d
in

g

summary comparisonpoint comparison

(c) Computational Variable
Predictions - Discrete ag-
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Figure 4.3: We consider the design variables of a visualization in order to make
predictions about how it supports di�erent aggregate comparison tasks. We
analyzed 8 time series visualization techniques using 3 variables, considering how
each variable aligns with task requirements to hypothesize about their performance
for 6 tasks. Blue squares indicate the variable aligns with the task, red show
misalignments, and grey indicate no prediction.

the limited perceptual fidelity of color.
Color Stock Charts (Figure 4.2f) explicitly map the local extrema and average

of each temporal range using color (average in the center, with top and bottom
runners representing local maxima and minima respectively). This approach is
comparable to the averaging aggregation discussed in Section 3.3. It simplifies
the visual computation required to extract point values from a colorfield while
preserving some high-level statistics from the series; however, the performance
benefit of this mapping may be limited by the ability of the color encoding to
communicate each statistic. Further, encoding only these tasks statistics sacrifices
the ability to extract data about local features or other distributional information.

Color weaving [Albers et al., 2011, Correll et al., 2012a] (Figure 4.2g) breaks
local structures in a colorfield by randomly permuting data values at the pixel-
level within each month (see Section 3.3 for more information). This technique
encodes a series as task-blocked woven glyphs whose pixel-level distribution
mirrors the distribution of values in each month. Prior studies have shown
that by breaking this local structure, color weaving improves the perceptual
system’s ability to summarize the encoded values [Correll et al., 2012a]. The
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enhanced visual structures of color weaving may better a�ord average and spread
comparisons; however, the increased di�culty of extracting a particular datapoint
may complicate point comparisons using color.

Event striping [Albers et al., 2011, Correll et al., 2011] (Figure 4.2h) highlights
outliers in the dataset by representing outlier values as broad “stripes” drawn
over a smoothed colorfield representation of the original series (see Section 3.3
for more information). Explicitly mapping outlier values within the series visually
boosts unusual values while the smoothed colorfield preserves the context of the
series. Event striping provides an example of an encoding designed specifically for
a given task. Its visual design is very similar to colorfields; however, the design
choices made to support outlier identification thought increased visual saliency
may influence how well the encoding supports other tasks, such as averaging, by
distorting the visual distribution of data.

4.4 Methods
A series of experiments, one for each of six tasks (discussed below), compared
the performance of viewers asked to make comparative judgments from time
series data across the eight di�erent visual encodings (described above). The
experiments shared some common features across both tasks and encodings that
we describe here. §4.5 describes the specifics of each experiment along with their
results for clarity.

Each experiment focused on one aggregate comparison task. The encoding
used to visualize the time series data was a between-subjects factor (see Figure
4.2). Accuracy (number of correct answers in a forced-choice setting) was the
principle measure. Participants were instructed to be as accurate as possible
and were allowed as much time as they needed to respond. I chose accuracy,
rather than response time, as our performance metric, as accuracy allowed us to
present stimuli that were more di�cult, and thus more generalizable to real world
datasets (see [Gleicher et al., 2013a] for more discussion of this choice).

Piloting revealed a small a learning e�ect—participants performance improved
with greater exposure to the di�erent visualization types. To partially counteract
this, participants first completed an set of four stimuli designed to show the
heterogeneity of di�culties present in the task and also to help participants
develop an initial understanding of the task and encoding. These initial “training”
stimuli were excluded from analysis. I also randomly interspersed stimuli that
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were intentionally “easy” to serve as validation questions to gauge both validity
of responses and participant understanding of task. For each task, a minimum
acceptable accuracy on validation questions was determined based on piloting.
Additional participants were recruited to replace participants failing to reach this
level. Validation stimuli were otherwise excluded from analysis. Each participant
saw a total of 44 stimuli (4 training, 6 validation, and 32 experimental) and was
paid $1.00.

I recruited all participants using Amazon’s Mechanical Turk infrastructure.
Each participant saw a brief tutorial explaining the encoding they were going to see
as well as the statistical property they were meant to compare. After the tutorial,
participants saw a series of individual graphs which were exposed for 20 seconds,
and after which were hidden. Participants could submit their answer at any point
after the exposure of the graph. In very few cases (less than 4%) participants
responded after the graph was hidden. I informed participants whether or not
they got the previous question right, and gave complete feedback at the end of the
task. After the participant completed the study, I collected demographics data.

Previous research has shown that Turk o�ers a reliable and diverse participant
pool and provides a mechanism for rapidly recruiting a large number of participants
[Buhrmester et al., 2011]. While there are known limitations to using Turk, with
proper care in experimental design, Turk studies have proven to be a reliable source
of human subjects data for understanding the e�cacy of designs for information
visualization.

4.4.1 Tasks

For each experiment, participants compared di�erent statistical values, rather
than calculating them precisely. For instance, rather than answering “what is
the highest number in this time series?” (an extraction of a particular value),
participants would answer “in which month does the highest number occur?”
(an extraction and then comparison amongst values). I had no knowledge of our
participants’ statistical backgrounds, so the specific task questions had to be
carefully phrased. For instance, range is the di�erence between the local minimum
and maximum whereas spread sounds similar but considers variation amongst
all points.

Little research exists exploring how to e�ectively ask lay audiences about
outliers and spread. For these experiments, I needed to determine e�ective ways
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of asking about these statistics. I generated candidate wordings by consulting
the Simple English Wikipedia and evaluated these candidates in a pilot study
on Mechanical Turk, asking participants to asses their comprehensibility and
accuracy. For the studies reported here, I asked participants to compare the
following statistical properties, using the following phrasing:

1. Maxima: Which month had the day with the highest sales for the year?

2. Minima: Which month had the day with the lowest sales for the year?

3. Range: Which month had the largest range of values?

4. Average: Which month had the highest average sales for the year?

5. Spread: Look at the average sales from each month. Which month had the
sales which were the most spread out from their monthly average?

6. Outliers: Which month had the most unusual (outlier) sales days?

For all experiments, I presented time series of sales data for a fictional company
over the course of a 12 month, 360 day “year” (to ensure months of equal length).
For each task, participants were asked to make comparisons on the scale of months
(e.g. which month had the highest average sales?). I believe this scale of data is
substantial enough to make explicit calculation impossible given the 20 second
exposure time available to participants, but su�ciently long for participants to
comfortably complete each task.

For all of these tasks, since the viewer’s specific goal was known to the designer,
the answer could have been given directly. However, the goal of this study is to
understand how visualizations work in settings where the designer may not know
the exact goal of the viewer, or the viewer may have multiple goals.

4.4.2 Stimulus Generation

To help increase the validity of this experiment, data needed to be carefully
controlled. The data needed to have a su�cient balance of apparent randomness
so that it appeared realistic but did not adhere to a particular pattern. Additionally,
I needed to control task di�culty and to vary the correct answer. To ensure that
the participant responses correctly aligned with the task (and not with a related
statistical property), we needed to explicitly decorrelate the correct answer from
other statistics. For example, unless care is taken, the month with the highest
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average often contains the highest single point. Explicitly decorrelating these
statistics discourages strategies that may provide the right answer, but to the
wrong question.

These constraints made it impractical to use real-world data. Therefore, I
developed procedures to synthesize stimulus data. For all tasks, the data was
created by blending together signals created by structured random noise [Perlin,
1985] that gave control over perceived noisiness and allowed for local adjustment
to create variation. A set of applied constraints ensured that the resulting signals
met the requirements of decorrelation and specific di�culties. The synthesizer fit
each signal to these constraints, while minimizing the adjustment from the initial
random signal. The final signals were created either by solving the corresponding
constraint optimization problem or by locally adjusting signals to achieve the
correct properties. The data was pregenerated for each experiment, and a post-
hoc analysis verified that the data met the appropriate constraints. The same set
of data signals was used for all encoding conditions within each experiment.

The stimuli for each experiment were generated from the data as pre-rendered
images. Stimuli were presented to the viewer as losslessly compressed images
to avoid variation in browser display. Color encodings used a green-yellow Color-
Brewer sequential ramp [Brewer et al., 2003a].

Hardness Parameters

For each task, a set of parameters were associated with task di�culty derived from
either past research or piloting. I leveraged three main dimensions of hardness:
�, the di�erence in value between the correct month and the next highest months
(lower � meaning more di�cult to discriminate between months), the number of
distractor months (the number of months with the value x - �, where x is the
correct highest value), and a qualitative dimension of noise. In each experiment,
there were two levels of noise ( “smoother” and “noisier” levels) and between one
and four distractor months. Acceptable levels of � were highly dependent on the
task and were modified for each experiment based on piloting. Each participant
saw an equal number of each level of � ⇥ noise, while the number of distractors
was randomly sampled across all stimuli.

In our experiments and in piloting, each hardness parameter was highly cor-
related with performance overall, although di�erent encodings could reduce or
eliminate this correlation. For example, two box plots encoding signals with equal
variation and extrema look identical regardless of the frequency of the underlying
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signal, so noise would likely not impact task di�culty for box plots. Di�culty
levels were considered in our statistical analyses.

4.5 Experiments and Results
This section detail each experiment (one per task) and the corresponding results.
For each experiment, I performed an Analysis of Covariance (ANCOVA) to deter-
mine the e�ect of encoding type on accuracy. The model also tested interaction
e�ects between encoding type and the aforementioned hardness parameters (�,
distractor count, and noise level). Hardness parameters generally had highly sig-
nificant e�ects in the expected direction (noisier signals underperform smoother
signals, smaller �s are more di�cult, etc.). As a result, I omit these factors from
reporting unless unusual. For significant results, I performed Tukey’s Test of
Honest Significant Di�erence (HSD) with ↵ = 0.05 to assess relative performance
of the encodings. I also performed post-hoc mean squared contrast tests to ver-
ify significant di�erences within these clusters. Figure 4.4 summarizes these
findings.

Including piloting and the main tasks, a total of 582 participants were re-
cruited (306 male and 276 female, µ

age

=31.3, �
age

=10.3). A Student’s t test found
no significant di�erences in performance across gender (µ

f

=60.1%, µ
m

=64.4%,
p = .0938). For each experiment, 8 participants were recruited per encoding,
totalling 64 participants for tasks evaluating all eight encodings, 56 for the spread
experiment (which excluded color stock charts), and 48 for the outlier experiment
(which excluded box plots and color stock charts). If a participant failed to achieve
acceptable performance on validation stimuli, I discarded their data and recruited
additional participants for that condition. Across all experiments, 37 additional
participants were recruited for this reason. 397 total participants were recruited
for the main experiments. Although accuracy was the performance metric, I also
tracked response time for each task and found the longer a participant spent
on a particular question, the more likely they were to be incorrect (b = -1.6%
accuracy/sec, Pearson’s r = 0.83).

Maxima

For this task, participants were asked to locate the month containing the day with
the highest absolute sales. Maxima within the series were created by amplifying
the natural peak in the base random series and constraining all remaining values



53

Maxima Minima Range Average Spread Outliers

LG 87.5% 78.9% 74.2% 47.7% 48.8% 36.7%

MSC 88.7% 96.1% 91.8% 56.3% 39.7% 34.0%

BP 75.0% 93.8% 88.5% 68.8% 85.0% X

CG 93.0% 88.3% 77.0% 85.9% 53.8% 33.6%

CF 59.4% 56.6% 48.8% 60.5% 57.8% 31.3%

CSC 69.9% 73.4% 64.8% 70.3% X X

WC 43.0% 45.7% 38.7% 77.7% 71.3% 23.0%

ES 61.7% 59.4% 44.1% 52.3% 42.2% 66.8%

Figure 4.4: A summary of our experimental results. All measures are in accuracy
across all participants. Gray rows indicate position encodings; white indicate color
encodings. Gray columns indicate summary comparison tasks; white columns
indicate point comparison tasks. An "X" indicates that the encoding does not
a�ord that task. and so no experiment was conducted for this combination of
task and encoding. Since performance is not strictly comparable across tasks,
cell color encodes the number and direction of standard deviations from the task
mean: 6 -1 , (-0.5,-1) , [0.5,-0.5] , (1,0.5) , > 1 .

to be at least � less. Picking the month with the highest average sales could be a
confounding strategy, especially in the color conditions where detecting individual
points is di�cult. As a result, the month with the highest average sales was
decorrelated from the month with the highest absolute sales. I sampled evenly
across �s of 1,2,3,4, with validation stimuli at � = 20.

Results: Encoding had a significant main e�ect (F(7, 2016) = 45.8, p < .0001).
Generally, position encodings outperformed color encodings, with one exception.
Box plots significantly underperformed all other positional encodings (F(1, 2016) =
24.5, p < .0001), and were not statistically significantly di�erent from the color
stock chart (F(1, 2016) = 1.70, p = .1930). The remaining color encodings performed
significantly worse than the color stock charts (F(1, 2016) = 28.8, p < .0001) and
the position encodings as a group.

These results support H1—as this was a point comparison task, we expected
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position encodings to outperform color encodings, which are not as accurate
for extracting exact values. There is partial support for H2—color stock charts,
which were the only color encoding to explicitly encode the maximum value in each
month, outperformed other color encodings. However, box plots, which were one of
two position encodings to explicitly encode maximum values, undeperformed the
other position encodings. This may be due to biases arising from visual properties
of box plots that have been shown to impact the perception of whisker values
[Behrens et al., 1990]. An alternative explanation is that viewers were unused to
whiskers encoding range; however, overall performance, especially on validation
stimuli, suggests that this is unlikely.

Minima

For this task, participants were asked to locate the month containing the day
with the lowest absolute sales. This task was functionally identical to the Maxima
task—questions about “highest” were changed to “lowest” and the stimuli were
derived using the same constraints as the Maxima task. Despite the similarities
in the tasks, prior work [Sanyal et al., 2009] suggests that there are di�erences in
performance between the two and that di�erent encodings may be appropriate for
detecting minima versus maxima.

Results: Encoding had a significant main e�ect (F(7, 1984) = 59.1, p < .0001).
Within groups, line graphs significantly underperformed the rest of the position
encodings (F(1, 1984) = 25.5, p < .0001), and were only marginally better than
color stock charts (F(1, 1984) = 2.76, p = .0966). The remaining color encodings
proved significantly worse than the color stock charts (F(1, 1984) = 46.1, p < .0001),
and also the position encodings as a group. Unlike other experiments (even the
Maxima experiment reported above), the noisiness of the signal had no significant
e�ect on accuracy (F(1, 1984) = 0.18, p = .6725).

As in the Maxima experiment, these results support H1—position encodings
tended to outperform color encodings. H2 was more strongly supported than
in the Maxima experiment—box plots and modified stock charts, which both
explicitly encode monthly minima, outperformed line graphs, and color stock
charts outperformed all other color encodings.
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Range

For this task, participants were asked to locate the month with the largest range
of sales—the largest gap between the maximum day and the minimum day. Initial
piloting showed that participants frequently confounded the range with the maxi-
mum. To avoid confounds with the maximum and the statistically related measure
of spread, we explicitly decorrelated these three quantities. This task proved more
di�cult for participants than either of the extrema tasks as it required participants
to compare the di�erence between two points. To avoid floor e�ects, stimuli were
sampled from �s of 4, 7, 10, and 15, with validation stimuli at � = 20.

Results: Encoding had a significant main e�ect (F(7, 1984) = 59.3, p < .0001).
The color encodings all significantly underperformed the position conditions.
Encodings which explicitly encoded extrema performed significantly better than
the other encodings of their type: color stock charts outperformed the other color
encodings (F(1, 1984) = 45.8, p < .0001), and box plots and modified stock charts
outperformed the other positional encodings (F(1, 1984) = 28.9, p < .0001).

As the range task is a pairwise point comparison task, these results support
H1—position encodings a�ord greater fidelity in extracting point values than color
encodings. H2 is also supported. Box plots, modified stock charts, and color
stock charts all explicitly encode local extrema values and all outperformed other
encodings with equivalent visual variables. Additionally, with box plots, a possible
strategy for completing this task would be to compare the length of the box and
whiskers (one value) moreso than the di�erence between extrema (two values).
Validating this strategy is an interesting potential direction for future work.

Averaging

For this task, participants were asked to compare means of months. In piloting,
the highest average value was often confused with the highest absolute value, so
these values were decorrelated in the stimuli. Stimuli were evenly sampled from
�s of 1,2,3,4, with validation stimuli at � = 20.

Results: Encoding had a significant main e�ect (F(7, 1984) = 22.6, p < .0001). The
three encodings which explicitly encoded discrete monthly averages (the composite
graph, box plot, and color stock chart) and discretely blocked woven colorfields
significantly outperformed the remaining encodings (F(1, 1984) = 122, p < .0001).
Within clusters, there were several pairwise results of interest. In particular,
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composite charts outperformed woven color fields (F(1, 1984) = 4.24, p = .0395),
and regular colorfields outperformed line graphs (F(1, 1984) = 11.4, p = .0008).

These results partially support H1—colorfields, which support preattentive
methods of summarization, outperformed line graphs, which do not. The data also
partially support H2—composite graphs, which explicitly encode mean, outper-
formed woven colorfields, which do not. However, color stock charts, which also
explicitly encode monthly averages, did not outperform woven colorfields, which
are designed to support ensemble statistical processing (e.g. mean and variance)
for visual aggregation. The data more fully support H3—all of the encodings which
discretely aggregated the data per-month outperformed the other encodings.

Spread

For this task, participants were asked to compare the spread of each month. Since
strict control over standard deviation requires complex optimization, I measured
spread using the more practical related statistic of absolute deviation ( 1

n

nP
i=1

|x
i

- x̄|).

Linear scaling about the monthly mean was used to tune the absolute deviation
of individual months to fit our constraints. Even so, it is di�cult to generate
large di�erences in variation as each point must remain in the [0,100] interval.
As “spread” is an ambiguous term, I decorrelated the month with the highest
absolute deviation from the month with the largest range. To avoid floor e�ects for
what was in piloting a di�cult task, stimuli were evenly sampled from �s of 2,3,4,
and 10, with validation stimuli with � = 15—the largest that could be reliably
generated in su�cient numbers.

Results: Encoding had a significant main e�ect (F(6, 1736) = 36.8, p < .0001).
Box plots outperformed color weaving (F(1, 1736) = 13.7, p = .0002), which in turn
outperformed all the remaining encodings (F(1, 1736) = 50.0, p < .0001). Stan-
dard colorfields outperformed both boosted colorfields and modified stock charts
(F(1, 1736) = 17.9, p < .0001). Noise had only a marginal e�ect on performance
(F(1, 1736) = 3.39, p = .0656), and the number of distractors had no significant
e�ect (F(3, 1736) = 0.847, p = .4679).

These results provide partial support for H1—woven colorfields performed better
than nearly all other encodings, as weaving allows for quick visual summarization
of the variance of a region despite not explicitly encoding this value. H2 was fully
supported—only box plots explicitly encoded a statistical variable that was highly
correlated with absolute deviation ( IQR) and best supported this task. There was
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little support for H3—while the top two encodings both explicitly blocked data
together into months, composite graphs were not statistically di�erent from any of
the other encodings despite being blocked with respect to a benchmark statistic
(average).

Outliers

For this task, participants were asked which month contained the highest number
of outliers. The task required both extracting summary statistics to characterize
the distribution of values and numerosity estimation of points violating these
statistics. Outliers were generated by amplifying days in the original random
signal that varied largely from the series mean to between 2.25-2.75 standard
deviations from the mean. To avoid visual “plateaus” where consecutive outliers
appear as on data point, outliers were spaced at least 3 days apart and no month
contained more than 8 outliers. Spread can confound outlier count, so the month
with the highest absolute deviation was decorrelated from the month with highest
number of outliers by reducing the absolute deviation of the high outlier month.
To avoid confounds between the month with the greatest number of outliers and
the month with the largest outlier, the largest value was decorrelated from the
month with the most outliers. For this task, � means that if the winning month
had x outliers, the other months had at most x- � outliers. Stimuli were evenly
sampled from �s of 1,2,3,4, with � = 5 for validation.

Results: Encoding had a significant main e�ect (F(5, 1488) = 28.3, p < .0001).
A Tukey HSD showed two clusters, with event striping outperforming all other
displays (F(1, 1488) = 127, p < .0001). The only other significant di�erence among
conditions was the color woven display, which under-performed all of the remaining
conditions (F(1, 1488) = 11.4, p = .0008).

These results support H2—by increasing the saliency of outliers, event striping
supported numerosity judgments of a statistically complex value better than all
other encodings.

4.6 Discussion
The results of these experiments, summarized in Figure 4.4, confirm that di�erent
designs support di�erent tasks. The three identified design variables provide a
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mechanism for identifying elements of these designs that may be responsible for
these di�erences.

• The choice of visual variables can allow the viewer to perform aggregation
visually in cases where the quantity of interest is not explicitly encoded,
or can facilitate discrimination between values which have been explicitly
encoded.

• The choice of mapping variables can help the viewer by explicitly encoding
the quantity of interest, but only if the relevant information is known.

• The choice of computational variables can align displayed information with
the viewer’s task if the task is known.

The results support the importance of these decisions: the predictions of how
choices in these variables should influence the performance of the resulting
designs are supported. For example, by matching display and task granularity,
composite graphs, which display discrete monthly averages rather than as a
continuous moving average, significantly outperformed modified stock charts for
average comparison. They also suggest that substantial tradeo�s occur when
designing for a specific task. For example, event striping underperformed standard
colorfields for all summary tasks except for outlier detection, despite their visual
similarity.

These results further indicate interactions between design variables. For
example, explicitly encoding relevant statistics may not overcome natural deficits
in point value extraction in color displays, as with color stock charts for extrema
and range tasks. In contrast, the a�ordances of color weaving for visual aggregation
outweigh these issues with color for average and spread. This suggests the potential
for designs informed by perceptual mechanisms.

The interaction between the visual variables used to represent data and the
statistics that are encoded by these variables helps designers better reason about
the e�ect of visual clutter in visualization. Traditionally, designers reason about
clutter as a function of visual variables. Considering computational variables
expands our ability to understand trade-o�s in visual clutter. If more information is
available (e.g. computation is done at a high level of granularity), viewers are better
able to accomplish specific tasks and process less information overall. However,
reducing visual clutter through computational variables forces the analyst to
consider the statistics actually used and how those statistics are applied (i.e. the
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mapping variables used). This reduces the number of tasks that can be readily
accomplished by the viewer.

The results with respect to visual variables are particularly poignant for this
dissertation. These results confirm the hypotheses in Section 3, namely that
color supports visual aggregation tasks combining data across all values more
e�ciently than position-based encodings such as line graphs. While performance
di�erences between position and color for point comparisons reinforces prior
assumptions about the utility of color in visualization, the superior performance
of color for summary tasks suggests their utility in supporting visual aggregation.
For example, comparing averages using a woven colorfield is roughly as e�ective as
explicitly representing an average in a color stockchart, both of which significantly
outperform the continuous positional averages in a modified stockchart. The
results of these experiments indicate that low-level mechanisms for processing
summary information may vary across visual features, and the e�ectiveness of a
visual encoding may di�er for point tasks, as in traditional graphical perception,
and visual aggregation tasks. Color may be particularly well suited for visual
aggregation as it allows the viewer to readily combine information across multiple
datapoints.
Value for Design: Matching designs to tasks is important. Beyond providing

empirical evidence of this importance to aggregation tasks in time series visualiza-
tion, these findings provide actionable advice in how to consider such matching.
As no design is likely to be e�ective for all tasks, designers must consider not only
their understanding of the target tasks for a display, but also how specifically they
want the display to support this task, at potential cost for other tasks.

By identifying three key design variables, these experiments provide specific
questions for a designer to consider in matching visualizations to tasks. For
aggregation tasks, the variables make explicit three key choices for composing a
visualization design. This work provides not only a set of questions to consider
in matching designs to tasks, but also predictions as to how the choices will
impact performance for di�erent tasks. The variables can guide a structured
exploration of the design space, for example, to assess potential of di�erent designs.
Designers can use these trade-o�s to create visualizations that better support
specific analysis workflows by making empirically-grounded encoding decisions or
building systems with multiple views using complementary encodings to support
a broad range of tasks.
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The possibility of e�ective visual aggregation provides new opportunities for
designers to create visualizations that support aggregation tasks. The design
variables provide connection between the emerging perceptual science and design
goals, coupling task features to performance predictions. This work demonstrates
the benefits and costs of di�erent design approaches enabling designers to make
informed choices about using each approach.

4.6.1 Limitations and Future Work

These experiments considers a small set of encodings and tasks for a specific but
common data type. I believe these findings generalize to a wider range of situations,
such as in genomic analysis or in designing encodings for two-dimensional data,
but have not confirmed this empirically. More exhaustive testing of this theory is
limited not only by the practical problem of running a vast number of experiments,
but also in choosing tasks that can be assessed in a controlled experimental
setting.

This work does not consider the various costs and tradeo�s in combining
design elements. For example, a design encoding multiple statistics may support
multiple tasks, or cause visual clutter that reduces its e�ectiveness at any one.
Similarly, it does not consider the costs of misalignment between design and task.
For example, does presenting data aggregated by month hurt performance at
questions about weeks or data at weeks hinder tasks at months? In the future, I
hope to better understand the tradeo�s of misalignment.

In practice, visualizations are often interactive, allowing the viewer to specify
their task, rather than requiring the designer to make assumptions about what
information a viewer is interested in. This work focuses on static visualizations,
emphasizing the importance of aligning tasks and design. However, extending
this work to consider interaction, including identifying new design variables, is
important future work. The next chapter will show how interaction might use
several of the encodings tested here to support complete analysis workflows.
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The previous experiments show that viewers can e�ectively estimate aggregate
values like mean and variance from color better than with position encodings. An
underlying motivation for designing for visual aggregation is creating visualiza-
tions that support aggregate analyses at scale. The previous experiments do not
necessarily demonstrate how color can support e�ective analysis as series grow
longer or as more series are analyzed at once. While empirical methods could
theoretically confirm the robustness of color for visual aggregation at scale, careful
control over data and other potentially confounding factors becomes increasingly
di�cult as more data is introduced. Additionally, the goal of understanding visual
aggregation for visualization is to design systems that support analysts in solving
real problems.

Instead, I demonstrate the how color can be used to support visual aggregation
at scale by developing systems that use these techniques to visualize data at scale.
I will prove their utility through a series of case studies from domain experts that
show how the systems support aggregate analysis at scale. The systems discussed
here address three real-world analysis problems: comparing gene sequences,
understanding language patterns in text documents, and evaluating machine
learning results across molecular surfaces. These systems have dramatically
increased the scale at which data can be analyzed in these applications. Through
these examples, I highlight the generalizability of the work presented in Chapters
3 and 4 to domains beyond time series analysis. I also show the need for solutions
that support visual aggregation tasks at scale.

5.1 Scalable Sequence Alignment Visualization in
Genomics

The first domain application I will discuss is sequence comparison (also a model
problem in Chapter 3). Sequence comparison is a fundamental task in the biologi-
cal sciences. Scientists often need to compare genomic sequences, for example, to
understand evolution, to infer common function or to identify di�erences. Because
sequences are often too long for manual examination, scientists rely on alignment
tools that automatically identify matching subsequences. Tools for visualizing
these alignments are commonly used when performing sequence comparison. A
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Figure 5.1: Sequence Surveyor visualizing 100 synthetic genomes generated by
an evolution simulation. Each genome is mapped to a row and genes are ordered
by position. Color encodes the position of the gene within the chosen reference
sequence (top row, indicated by the green box). Genes are aggregated, with each
block’s texture reflecting the overall distribution of colors in that block. The
dendrogram shows the phylogeny of the data set while the histogram shows the
frequency distribution of orthology group sizes.

variety of approaches for displaying and exploring alignments exist, and have been
incorporated into a wide variety of tools (see Procter et al. [2010] for a survey of
popular tools). The amount of sequence information available is growing rapidly.
Scientists are exploring larger numbers of genomes and longer genomes. However,
most tools by design focus on providing in-depth exploration of a small set of
sequences for predefined tasks. Focusing on point-level details obscures the task
of tracing aggregate trends in large datasets (cf. Figure 5.6a). Looking at larger
datasets at this fine level of detail is overwhelming, and does not scale to growing
datasets.

Most comparative biological sequence visualizations are variants of four basic
designs: juxtaposed value representations that leverage color or bar graphs
to visualize raw sequence data, dot plots (scatter plots with sequence position
on the axes), synteny views (which indicate matches relative to a reference), or
parallel-coordinate views (which show alignment by drawing connections between
sequences). These tools are conventionally designed explicitly for particular tasks
and datasets. For example, the Broad Viral Viewer [Jen et al., 2009] provides
for comparison of dozens of viral genomes, while Mauve [Darling et al., 2004] is
useful for a half-dozen or so medium (bacteria-sized) genomes and Mizbee [Meyer
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Figure 5.2: Genome alignments are computed from genome sequence data by
identifying matching subsequences (left), known as orthologs. Ortholog groups are
identified by integer tags (right). Sequence Surveyor uses orthology data to explore
genome alignments. In real data, orthologs are far longer than four nucleotides.

et al., 2009] supports pairwise comparisons of larger genomes. Scalability limits
may come from memory or performance issues as tools get bogged down with too
much data. But often, scalability in biological visualization is hindered because
the visual design breaks down: the displays simply become ine�ective when there
is too much data to display in detail.

Instead, leveraging the insights developed in Chapter 3, I developed the Se-
quence Surveyor system, shown in Figure 5.1, with collaborators in computer
science and bioinformatics, to provide flexible overviews of large whole genome
alignment datasets. This design provides a first proof-of-concept that embodies
the advantages of color for scalability and visual aggregation hypothesized in
Chapter Understanding Perception for Visual Aggregation, demonstrating how the
proposed method of aggregation retains salient features as the dataset scales up.
Sequence Surveyor allows scientists to examine patterns and trends in multiple
genome alignment datasets of over 100 bacterial genomes (Figures 5.9 and 5.11),
roughly ten times what conventional connection-based visualizations support
([Darling et al., 2004]). Because we cannot know a priori the kinds of questions the
data will be used for, my approach provides flexible mappings that allow di�erent
kinds of patterns and trends to be made salient as the viewer explores the data.
Mechanisms for filtering, zooming, and reordering the data help scientists cluster
data according to di�erent properties of the dataset to find large-scale features
and connect these to smaller sets of details for further exploration, while color
encodings support visual summarization and help mitigate visual clutter.

5.1.1 Biological Background

The primary task of alignment visualization involves viewing matching regions
between a set of sequences. Alignment visualization is useful for many types of
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sequence data, such as proteins and RNA. In this section, I focus on whole genome
alignments (alignments that map genes across di�erent genomes). Genomes are
segmented into functional regions (i.e. genes), and each sequence is represented
as an ordered list of genes (cf. Figure 5.2). Alignments identify groups of matching
(evolutionarily-related) genes, known as ortholog groups, present in one or more
genomes in the dataset. These groups, as computed by the alignment, serve
as identifiers for related classes of genes. This type of data is technically called
gene-level alignment, but, for the purposes of this paper, the more general term
alignment data will be used. While pairwise alignments (comparisons of two
sequences) are the most common form of alignment, alignments between multiple
sequences are becoming increasingly important as sequence information becomes
more abundant and better understood.

One important and complicating aspect of visualizing whole genome alignments
is that there are potentially thousands of related elements which may occur in
di�erent orders and copy numbers in each genome. When trying to understand
an alignment, a scientist often needs to consider other information such as the
details of the sequences, annotation data, expression information, and other
information generally associated with exploring a single sequence (see [Peeters
et al., 2004] for a survey). One of the primary tasks that arises in whole genome
alignment data is understanding patterns of conservation—the preservation of
orthologous genes between species—in the dataset. Understanding patterns in
conservation can allow scientists to make conjectures about evolution and common
function of di�erent species. Conservation can help answer questions about the
presence of genes at di�erent loci in the genome, origins of replication (i.e. where
rearrangements of genes between di�erent species begin), and proportions of the
genome shared between di�erent organisms. These types of general questions
make whole genome alignment data important: by understanding conservation
between genomes, we can begin to understand how di�erent gene sequences
function within an organism.

5.1.2 Solution Overview

In Sequence Surveyor, multiple genome alignment data is visualized as horizontal
tracks, with each row corresponding to a sequence and rows separated by whites-
pace to support visual search and summarization (see §3.2). Data within each
track is visualized using color, according to the aggregation method outlined in
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(a) Color by reference (b) Membership frequency coloring and
sorting by grouped frequency

(c) Color by membership frequency and
order by position in reference

Figure 5.3: Sequence Surveyor provides flexile color and position mappings that
address di�erent questions about data. (a) Coloring by the position of genes
in a reference genome (green rectangle) shows that genomes most similar to the
reference, indicated by preserved color gradients, are not those most closely related
(the adjacent genomes). (b) Frequency-based mappings can highlight patterns
of presence and absence across species. Bands of genes create conservation
“fingerprints” for each genome that align well for closely related genomes. (c)
Membership frequency (most (red) to least frequent (blue)) combined with reference
ordering (magenta box) highlight uncommon regions of the reference: green
columns in the reference show that other species that share some relatively
unique regions.
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§3.3, to facilitate di�erent visual aggregation tasks.
Gene properties are encoded within each track using both x-axis position and

color to facilitate visual aggregation. A number of mappings are shown in Figure
5.4 and detailed in §5.1.4. Position encodings follow a left-right reading order,
and can be mapped to derived axes generated by particular properties of the
data to facilitate novel insights. Derived positions involve sorting orthologous
genes by frequency (the number of genes matching it) or position in a selected
reference genome. Color can also be mapped to either raw properties of the
dataset or to other derived axes. Flexibility in these mappings allow to analysts to
create meaningful patterns and clusters within the data. For example, positional
ordering coupled with position in reference coloring identifies common genes
and their rearrangements across the dataset, while ordering by frequency and
coloring by position gives a sense of the conservation between sequences. Figure
5.3 illustrates some potential mapping combinations on real data.

Genes within each sequence are visualized as a series of screen-space blocks
according to the methods presented in §3.3. Interactively switching between
aggregate glyphs allows the viewer di�erent kinds of aggregate insight into the
dataset. Various other interaction techniques support point-level analysis. For
example, hovering the pointer over a block highlights blocks that share common
genes and explicitly enumerates the genes within the block. A histogram of gene
frequencies and a phylogenetic tree provide linked views that highlight subsets of
the data. Zooming and detail displays help connect large patterns to these specific
details.

5.1.3 Design

With Sequence Surveyor, I wanted to create an alignment visualization tool able to
scale to large numbers of genomes (dozens or more) and large genomes (thousands
or more genes per sequence). At the same time, the system must handle the full
complexity of these alignments, including rearrangements, reference dependent
and independent tasks, and gene repetition. Furthermore, the study of such
massive datasets is new: the questions to be considered are wide-ranging and
this display may o�er the opportunity to discover new questions.

Sequence Surveyor was designed to take advantage of perceptual processing
to provide scalable overviews of data. While emphasizing visual aggregation in
an overview system may come at the expense of providing the details usually
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(a) Index/index: has
little value beyond ac-
quainting users with the
color map. Light to dark
shows beginning to end.

(b) Index/member-
ship freq: light to
dark encodes common-
ality. This identifies and
localizes common (con-
served) genes.

(c) Index/group freq.:
is similar to (b), but
provides di�erent color-
ing options. The fully
conserved set (in all
genomes) can be readily
identified (purple).

(d) Index/pos. in ref.:
help localize commonali-
ties and reversals with a
reference.

(e) Group freq./index:
shows commonality of
genes, with less empha-
sis on locality.

(f) Group
freq./membership
freq.: reinforces pat-
terns in conservation.

(g) Group freq./group
freq.: reinforces pat-
terns in conservation.

(h) Group freq./pos.
in ref.: elucidates pat-
terns in conservation
and comparison with a
reference.

(i) Pos. in ref./index:
Shows commonality
with a reference and
exposes rearrangement.

(j) Pos. in ref./memb.
freq.: emphasizes com-
mon genes (dark green)
with respect to a refer-
ence.

(k) Pos. in ref./group
freq: emphasizes com-
mon genes (purple) with
respect to a reference.

(l) Pos. in ref./pos
in ref: emphasizes
comparison with a refer-
ence.

Figure 5.4: Sequence Surveyor views shown on a toy dataset, each combining a
position mapping and a color mapping. Di�erent mappings make di�erent patterns
emerge in the color field. Subfigure rows show di�erent position mappings,
columns show color mappings (see subfigure captions). The top genome is the
reference for both coloring and position. Nucleotide-level start position mappings
do not apply in this example.

considered in traditional visualization tasks. While some low-level detail can be
obtained in Sequence Surveyor through interaction, supporting full multiscale
analysis is outside of the scope of this project.

The design of Sequence Surveyor is derived from the perceptual analysis pre-
sented in §3.2. This analysis suggests a colorfield design, rather than the designs
leveraging connection or position, which are more common in alignment visualiza-
tions. By encoding orthology using color instead of explicit connections, to some
degree, I exchange accurate identification of individual connections for scalability.
While color fields allow patterns and trends to “pop out” and visual structure to be
estimated e�ciently in large displays, this requires determining what patterns and
structures are of interest. As this is not known a priori, I instead define flexible
mappings (§5.1.4) that allow user control and exploration over how visual features
map to data.

However, the set of tasks supported by Sequence Surveyor are a superset of
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the general theoretical tasks introduced in §3.2. For example, in addition to
finding high-level structures supported by visual summarization or searching
for individual values, viewers may care about specific repeated subpatterns in
the dataset, known as motifs. They may also care about detecting this pattern in
reverse, known as an inversion, and detecting repeated patterns robust to some
level of noise. These motifs (and the degree of noise in a motif between di�erent
organisms) can indicate important evolutionary relationships or sets of genes that
collectively support an important biological function. Alternatively, a biologist
might be interested in estimating the approximate similarity (or lack thereof)
between di�erent genomes or sets of genomes (e.g. 5.9). This similarity may be
both in left-right order across color gradients and unordered across an entire
genome.

I also provide di�erent schemes for aggregation (§3.3), not only allowing the
system to scale to data sizes much larger than the number of pixels, but also con-
trolling visual clutter and if trends or outliers are more significant to a particular
exploration. This design demonstrates the utility of this method of aggregation
and provides examples of where di�erent aggregate representations provide dif-
ferent insight into the data. Other aspects of the design that support aggregate
analysis for genomic data include mechanisms for arranging the data for e�ective
comparison (§5.1.5) and interaction techniques to aid exploration and connect to
details (§5.1.6).

5.1.4 Mapping

Colorfields allow us to present a large field of information, yet have certain patterns
and details readily emerge. However, the properties assigned to color and position
within the colorfield will determine what kinds of information will form noticeable
patterns. Unfortunately, the specific information that a scientist is looking for
is unknown a priori. A scientist may have many di�erent kinds of questions,
and new questions will emerge as they begin to explore new datasets. Sequence
Surveyor provides a flexible set of mappings from the data to the display, giving the
analyst control over the information encoded by horizontal position and color (cf.
Figure 5.3). While many of these encodings have appeared in previous tools, this
approach provides a generalized view of alignment data through these interactive
mappings (Figure 5.4).

Sequence Surveyor maps genes according to several natural and derived prop-
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erties of the data. Gene index is a gene’s position relative to the ordering of genes
in the sequence, while its start position is its location in terms of the actual DNA
(the lengths of di�erent genes and gaps between them are included). The position
in reference represents the gene index of a matching gene in a selected reference
sequence. Frequency properties measure how many other genes match a given
gene (the size of its ortholog group) and are important for understanding conserva-
tion across a dataset. Membership frequency counts how many di�erent genomes
contain at least one instance of an ortholog, while gene frequency counts how
many times an ortholog occurs (this is typically greater than membership as a
genes may be duplicated within genomes as paralogs). Grouped frequency further
orders orthologs by the sets of genomes that contain them.

Any of these six properties may be mapped to color. Four may be mapped
to position (of the frequency properties, only grouped frequency provides a total
ordering required for a horizontal mapping). Di�erent configurations of these
properties make di�erent kinds of patterns apparent in the display. Several of these
mappings reflect the data mappings provided by common genomic visualization
tools, while others present more unusual views of the data. See §5.1.7 for a
discussion of how these mappings can be used in biological exploration. Genomes
can be interactively reordered to facilitate comparison between di�erent sets and
reorganize the data as di�erent patterns are revealed.

Sequence Surveyor provides a series of eleven di�erent color schemes: ten
Color Brewer [Brewer et al., 2003a] ramps and one flat gray to remove visual
clutter from irrelevant data. For several mappings, two color schemes are chosen
to highlight data belonging to di�erent semantic sets. For example, the position
in reference mapping uses one ramp for orthologs that match the reference, and
a second ramp for those that do not (the solid gray ramp is particularly useful
for this). In addition to providing aesthetic control, the color schemes provide the
user with a certain degree of control over pop-out by allowing them the choice of
color assignment for di�erent attributes of interest.

Color mappings provide visual patterning over the data: blocks with similar
properties map to similar colors. This creates color gradients in the display that
encode large-scale trends. Breaks in the gradients can pop-out to highlighting
variations in these global trends. It also supports the preattentive association of
various data points by creating large fields of color at regions of high similarity.
Sorting mappings take advantage of the visual system’s predisposition to clustering.
Sorting according to particular parameters clusters visually on these parameters,
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imposing an orthology-based structure to the visualization: orthologous sets
become spatially colocated. This allows the viewer to quickly identify regions of
interest to scan for patterns and creates new high-level structures that can be
readily summarized to support visual aggregation tasks.

However, non-traditional orderings of genes within colorfields can potentially
hinder visual search tasks: the viewer may not know where particular data might
be found. By default, Sequence Surveyor orders genes according to a conventional
relative ordering. This ordering conforms to the common model of genomics data
and can help anchor and contextualize exploration as the user interacts with the
data [Liu and Stasko, 2010].

5.1.5 Data Display

The colorfield display presents an interactive overview of the entire dataset. How-
ever, additional coordinated visualizations provide supplemental insight into the
data. Two primary coordinated visualizations are used: a phylogenetic tree to
contextualize evolutionary patterns between organisms and a histogram that
communicates the distribution of gene conservation throughout the dataset.

The phylogenetic tree shows the evolutionary relationship between genomes
within the dataset—the evolutionary lineage of the di�erent organisms present in
the dataset is encoded using a tree. Using the phylogenetic data as to order the
genomes within the dataset clusters genomes according to an approximation of
their pair-wise similarity. This organization colocates genomes that are likely to
share a large number of genes.

Overall gene-level information is summarized in the histogram. The height
of histogram bar represents gene frequency and orthologous gene groups are
sorted and aggregated according to the same frequency metric. The resulting
shape conveys the overall frequency distributions of genes within the data set. A
lasso-selection filter highlights interesting frequency clusters in the main display.
Brushing in the histogram coordinates with the phylogenetic tree by highlighting
branches up to the most recent common ancestor shared by the genomes con-
serving the brushed genes. This interaction also highlights these orthologs in the
primary display.
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Figure 5.5: Overview+detail zooming manages the non-locality issues arising in
multiple genome alignments. As the user mouses over blocks in the genome
view, component genes of those blocks are visualized in the zoom window (top),
positioned vertically according to the strand where they are found and horizontally
according to the position mapping. Zoom can be locked onto a block for interactive
functionality.

5.1.6 Interaction: Exploration and Zooming

Sequence Surveyor is designed to support visual aggregation tasks, allowing the
viewer to identify high-level patterns in large scale data. However, the low-level
details of the underlying data are still significant to exploring large datasets.
Sequence Surveyor uses interaction techniques to reveal detailed information
hidden by overview abstraction. Information about the genes, chromosomes and
sequences represented in a block can be accessed in tooltip window. Brushing
across blocks reveals genes conserved across di�erent genomes—mousing over
a particular set of genes highlights blocks containing orthologous genes. This
also highlights the path between the target genome and its immediate sibling
sequences in the phylogenetic tree, guiding organism-level comparison.

When used in moderation, connection is powerful for communicating point-level
trends in data. Blocks containing genes of interest can be physically connected on
demand to highlight specific conservation patterns. Similarly, viewers can filter for
genes of a specific name or property. Filters reduce the opacity of blocks outside
of the filter, preserving the overall context of the data while visually emphasizing
genes of interest.

Because genes may occur at di�erent loci within di�erent organisms, conven-
tional zooming techniques do not support low-level exploration—zooming to a
single loci across all genomes is likely to be uninformative. Traditional zooming
techniques, such as semantic and goal-directed zoom, can hide matching data as
the viewer drills down. Sequence Surveyor instead uses an adapted overview+detail
zooming technique (Figure 5.5). Mousing over an aggregate block sets it as the
zoom detail block. The component genes of the block are broken down in the
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zooming window at the top of the screen. Genes are visualized on either side of a
reference line based on the strand of the DNA the gene is located on. Interacting
with this zoomed block highlights occurrences of the gene in the overview, allowing
the viewer to explore high-level patterns for specific genes.

5.1.7 Applications

Parallels to Existing Tools

By allowing the user to customize visualization parameters on demand, Sequence
Surveyor is able to present views familiar to users of common tools. This provides
familiar paradigms for exploring the datasets at scale. Here, we explore the views
provided by four popular alignment visualization systems—Mauve [Darling et al.,
2004], Mizbee [Meyer et al., 2009], the Broad Institute Medea package [Jen et al.,
2009], and the UCSC Genome Browser [Kent et al., 2002]—and show how the
information from these views can be displayed at scale in Sequence Surveyor.
These applications demonstrate how color can facilitate scalability where other
encoding methods fall short.

Mauve: The Mauve viewer displays alignments using a parallel ribbon design:
genomes map to rows and orthology is encoded by connection. Despite the
scalability issues discussed in §3.2, Mauve is e�ective for observing matchings
between genes to see the patterns of conservation and rearrangement. By mapping
gene position to start position and encoding matching genes with similar colors
(for example grouped frequency or position in reference), Sequence Surveyor can
convey similar information at much larger scale. For instance, inversions creating
crossing formations in Mauve are reflected in Sequence Surveyor as inverted color
ramps. While, in practice, crossing patterns are often much more salient than
color for small inversions, detail-on-demand links can be used to supplement
the color-based encoding. Additionally, Sequence Surveyor’s flexibility in coloring
makes it easier to see observations of interest (see Figure 5.6).

Mizbee: Mizbee’s genome view shows conservation between two genomes by
examining the conservation between particular chromosomes in a source genome
and orthologous genes in a destination genome. Color maps to the destination
chromosome that the conserved region is found in and conservation is further
indicated by orthology ribbonning. Per-chromosome conservation information
can be seen in Sequence Surveyor by filtering by orthology to the chromosome of
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(a) Mauve [Darling et al., 2004]. Refer-
ence genome E. coli CFT073 forms the
top row.

E Coli CFT0773

(b) Sequence Surveyor coloring by posi-
tion in E. coli CFT073 (green circle, top
row) and ordered by start position.

Figure 5.6: Ten E. coli and Shigella genomes visualized by (a) Mauve and (b)
Sequence Surveyor. The vertical genome order is the same in both cases. The
conservation trends represented by orthology lines in Mauve become large color
fields in Sequence Surveyor. Inversions appear as reversals in the color ramp.
Regions not conserved appear as warm-colored blocks pre-attentively popping out
of the visualization.

interest and using interaction to explore more detailed conservation relationships
(Figure 5.7). Mapping color to position in the destination genome reinforces the
synteny coloring employed by Mizbee. While Mizbee’s mapping uses categorical
coloring to support point-level pattern finding, the continuous coloring intro-
duced by Sequence Surveyor may be better summarized in aggregate patterns
than in Mizbee—ensemble statistics are more meaningful as color distances are
semantically mapped.

Medea: The Broad Institute’s Medea suite provides five di�erent visualization
perspectives for viewing sequence alignment data for closely-related viruses: the
Circular Genome Viewer, Stack Map, ChromoMap, Dot Plot, and Viral Viewer.
Because these viral genomes are small and tend to have only point mutations,
the Broad tools focus on reference-based displays: there are no issues of non-
locality as matching regions are co-located in the data set. Sequence Surveyor can
support similar explorations to the Medea suite by encoding data using position
in reference.

UCSC Genome Browser: While the focus of the UCSC genome browser has
traditionally been on exploring individual genomes, there is also limited support for
visualizing multiple sequences simultaneously. This approach selects a reference
genome and places all other genomes in parallel tracks beneath the reference.
A box in a track represents a subsequence that is conserved in the reference.
Conserved regions are ordered according to their position in the reference genome.
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Ajellomyces capsulatus

Figure 5.7: Mizbee provides multiscale insight into gene conservation, but focuses
heavily on chromosome-level analyses. In Sequence Surveyor, an analyst can filter
on a chromosome to explore chromosome-level patterns: blocks that do not share
genes with the target chromosome are reduced in opacity. Coloring according to a
reference using event striping helps highlight conservation, for example, across
34 fungal genomes.

This conservation data can be explored in Sequence Surveyor by sorting the genes
according to their position in the desired reference. Any elements conserved from
the reference will line up beneath their corresponding positions in the reference
genome (see Figure 5.8). Color provides an additional channel for additional
analysis in context.

Unconventional Mappings

Sequence Surveyor supports exploration using less conventional mappings to
provide insight into di�erent properties of the data. Novel position mappings
leverage summary processing to cluster genes more e�ectively than either color
or connection. Most existing tools do not explore gene position orderings besides
sorting by start position. While this mechanism is useful for viewing data when
gaps are relevant, it increases the number of objects on the screen, thereby
increasing cognitive load for search tasks. Alternatively, gene index sorting orders
genes according to their local position in the genome, removing extraneous gaps
in the data and dedicating more space to genes.

While many tools support coloring data according to a reference genome, small
regions not conserved in the reference can easily be obscured. Mapping gene
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Pseudomonas fluorescens PfO-1

Figure 5.8: Genes from 50 bacterial genomes are sorted and colored according to
their position in Pseudomonas fluorescens PfO-1 to support analyses comparable
to the UCSC Genome Browser (green circle). Genes not conserved in the reference
are sorted according to their order in the remaining genomes (computed from the
topmost genome downwards).

position to a reference segregates ortholog groups according to their conservation
in the reference, preserving small unconserved regions. This mapping also reveals
the degree of homology between the source and other genomes: the smaller
the reference genome becomes, the fewer ortholog groups it shares with the
remaining genomes in the set. Similarly, sorting by grouped frequency visually
clusters data according to the sets of genomes each ortholog group is contained
in. This provides insight into co-occurring genes. If paired with a start position or
gene index coloring, these position mappings can display information about the
organization of conserved regions in the data such as large-scale inversions and
rearrangements.

Raw gene frequency is not commonly visualized in existing tools despite its
intuitive meaning. However, coloring by gene frequency can reveal significant du-
plication patterns in the dataset, potentially signalling significant genes or bugs in
the underlying data. This coloring also visualizes many-to-many correspondences
between the instances of a group in di�erent genomes.

Use Cases

Four groups of domain scientists—evolutionary biologists, a systems biologist, a
yeast biologist, and a bioinformatician—used Sequence Surveyor for sequence
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comparison. All four groups had large genome alignment data that they want to
explore, but no analysis tools to support that exploration. They evaluated the tool
using three bacterial datasets (100 genomes with up to 6,037 genes per sequence
(cf. Figures 5.9, 5.11), a subset of the 100 bacteria dataset with 50 bacteria and
up to 5,765 genes per sequence (cf. Figures 5.8), and 14 plant pathogens with up
to 4,507 genes per sequence (cf. Figures 5.3, 5.10)), one Mauve alignment of ten
E. coli genomes (cf. Figure 5.6), and one draft multi-chromosomal fungal dataset
with up to 17,349 genes per genome (cf. Figure 5.7). My collaborator prepared
the datasets from the domain scientists, including computing the alignments (the
large alignments took 10 days of CPU time).

Users appreciated Sequence Surveyor as an examination tool useful for discover-
ing and describing aggregate trends in data. They were immediately struck by the
scale of the visualizations, not just in terms of size, but also in terms of diversity.
Most were pleasantly surprised as they made observations comparing organisms
thought to be unrelated. For example, filtering allowed them to quickly identify
interesting genes and view the conservation of those genes even in unrelated
sequences. The 100 bacteria dataset aligns genomes from a variety of organisms,
like Yersinia pestis (Black Plague), E. coli, Salmonella, and Xylella fastidiosa (a
plant-bourne pathogen). The organization of the data according to evolutionary
families proved to play an important role in comparing this diverse dataset. Col-
oring by position in a reference organism from a given family highlighted high
levels of conservation between related families, visualized as continuous gradi-
ents (Figure 5.9). Closely related families generally conserve the reference color
ramp, whereas less related families introduce new, more divergent color patterns.
Furthermore, it allowed the biologists to identify Citrobacter genomes by eye from
their conservation patterns and place these genomes near the related Escherichia
genomes to better facilitate comparison. More global conservation patterns can
be seen using grouped frequency sorting (cf. Figure 5.11a).

Sequence Surveyor allowed the scientists to quickly identify the set of genes
that were conserved across the entire dataset, also known as the “ancestral core”,
formed by the leftmost columns of genomes when mapping position to grouped
frequency ordering. With respect to systems biology, the ancestral core is often
composed primarily of essential metabolic genes. Being able to quickly identify
these metabolic genes through this ancestral core can help highlight locality
patterns between metabolic genes of interest from specific metabolic pathways.
From an evolutionary standpoint, these core genes can reveal interesting functional
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Buchnera

Citrobacter

Salmonella

Xylella
Xanthomonas

Shewanella

Shigella

Pseudomonas

Escherichia

(a) Color gradients across genomes reveal evolutionary relationships.

(b) Genomes related to E. Coli preserve
a red-to-yellow gradient.

(c) Genomes largely unrelated to the ref-
erence are largely green and blue.

Figure 5.9: Genome order can help reveal patterns between families of genomes.
(a) Sorting one hundred bacterial genomes by index and coloring by position
in an E. coli organism highlights the high conservation between (b) Escherichia,
Shigella, Salmonella, and Buchnera genomes through warm colored bands and
lack of conservation between (c) E. coli and the Pseudomonas and Shewanella
genomes.
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(a) Robust averaging shows that genes
are well conserved overall (warm-colored
blocks).

(b) Event striping highlights the outliers,
exposing the distribution of more unique
genes (blue).

Figure 5.10: Fourteen bacteria colored by membership frequency shows the
conservation of genes and their spatial organization.

properties of di�erent genomic regions. The Buchnera genomes are drawn from
insect parasites whose genomes have been pared down to an essential set of
genes necessary for survival. By adjusting the parameters in Sequence Surveyor,
this observation becomes readily apparent as nearly all component genes of
these genomes appear as part of this ancestral core. The biologist can even gain
insight into the loci at which these genes are conserved within other families
of bacteria. The ability to manipulate the representation of the comparison of
Buchnera genomes and the rest of the dataset is communicated very visually in
Sequence Surveyor (Figure 5.11).

My collaborators found Sequence Surveyor’s ability to address di�erent ques-
tions valuable. While exploring the data, position mappings like grouped frequency
allowed them to quickly address questions that we had not previously considered,
such as what set of genes is conserved only in a specific subset of the genomes.
Also, they commented on how the tool’s ability to blend location and conservation
data in a flexible setting would allow them to quickly identify the location of inter-
esting clusters of genes and how tuning aggregation settings could support the
exploration of unique features in their data (Figure 5.10).

Visualizations of large-scale patterns in data are also valuable for discovering
bugs in datasets and alignment algorithms. As an example of Sequence Surveyor’s
value as a debugging tool, with it my collaborators were able to identify a number of
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(a) Grouped frequency position clusters the genes conserved in all organisms (the “ancestral
core”) in the leftmost columns.

(b) Averaging shows that few regions are
dominated by the genes in the ancestral
core

(c) Color weaving reveals the prolific dis-
tribution of the genes in the ancestral
core.

Figure 5.11: A visualization of one hundred bacterial genomes helps to identify
a candidate set of genes required for bacterial function. The top six genomes,
Buchnera insect parasite genomes, are concentrated in this cluster, reinforced
by position in reference coloring (red). The clustering of these genomes to the
left of the display highlights genes necessary for bacterial function (the ancestral
core), whereas the genes to the near right are likely to provide the organism
with specialized function. The genes in the ancestral core, while significant, do
not account for most of the variation in the data—sorting the Buchnera genes
by their natural position, coloring them red and (c, d) using di�erent aggregate
representations reveals how these genes are distributed in the dataset.
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problems with a draft alignment of 37 fungal genomes used during our testing and
evaluation. First, the visualization quickly revealed that this dataset contained
a putative ortholog group of over 60,000 genes. This group popped out easily
due to an extreme skew in the histogram and again by using gene frequency
coloring. Upon a more detailed exploration of the genes in this group, the extreme
duplication revealed itself to be a bug in the orthology assignments and was
removed from the alignment. A second major issue revealed by the tool was that
a number of genomes did not contain many genes that had orthologs in other
species. This discovery prompted a manual inspection of parts of the alignment,
which ultimately led to the identification of some inconsistencies in the labeling of
genes by the alignment code. Without Sequence Surveyor, it is likely that it would
have taken a lot more time for these problems to be discovered.

5.2 Generalizing Sequence Analysis to Text
Analytics

I hypothesize that the design of Sequence Surveyor can be applied any analysis
problem comparing data with a total ordering and similarity mapping (or “orthol-
ogy”) between datapoints. Obvious extensions include visualizing amino acid and
nucleotide-level alignments. However, an unconventional application of these tech-
niques is to text analysis. Texts, in essence, form sequences of words. A scholar
can analyze linguistic patterns and literary structures by visually aggregating
information across di�erent texts.

In this section, I introduce TextDNA, a system for scalable text analysis built
with collaborators in English. TextDNA uses the same principle design compo-
nents as Sequence Surveyor to support analysis a di�erent domain. This work
exemplifies the generalizability of color for visual aggregation in a domain that
is likely more familiar. This section will focus primarily on three novel insights
that my collaborators were able to discover using this system. The images in this
section are from the original prototype system; however, a web-based version that
includes hardware acceleration for one-dimensional aggregation has recently been
deployed (http://vep.cs.wisc.edu/TextDNA/app/templates/list.html).

http://vep.cs.wisc.edu/TextDNA/app/templates/list.html
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5.2.1 N-Gram Analysis

This section will explore two di�erent types of text data: ranked n-grams and raw
text. N-grams count how often strings of n words occur in a text. The Google N-
Grams dataset (Michel et al. [2011]) provides these numbers (plus other metadata
such as publication date) for Google Books. Most methods for exploring this
kind of data—including the visualizations that accompany this dataset—visualize
data for a handful of words over time, focusing on patterns for specific words
rather than specific texts or time periods (e.g. Krstajic et al. [2011]). However,
understanding n-gram data in such a large corpus (over 5 million texts) provides
aggregate insight into the evolution of written language.

This section presents two findings drawn from a dataset focusing on word usage
over time. The data contains the 1,000 most popular words (1-grams) per decade
in the Google N-Grams dataset between 1660 and 2010. To parallel Sequence
Surveyor, words are treated as genes, ranks as positions, and decades as genomes.

The first example demonstrates how scholars used TextDNA to identify a sig-
nificant typography shift within the dataset. The second example shows how the
ability to visually combine information between sequences can help understand
linguistic shifts over time. The third shows how TextDNA can also be used to tie
findings from visual aggregation tasks to specific, point-level examples.

Looking into the Long S

Figure 5.12 visualizes the 1,000 most popular words per decade between 1660
and 2010. Decades are ordered chronologically from top to bottom, with each
decade represented as a single row. Words are represented as colored blocks
within each row. Their ordering in each row is reflective of their popularity: the
most popular word is on the left and the 1,000th most popular word is on the far
right. Words are colored according to the decades that they co-occur in (i.e. their
grouped frequency, see Section 4.3), with red words occurring in the 1,000 most
popular in each decade of the dataset and blues occurring in the top 1,000 most
popular in an increasingly small subset of the decades. Blocks of words encoded
using event striping to highlight unusual words within the data. My collaborators
were able to use this exploration to find an important class of words, referred to
as ’Long S words’ that were misprocessed in the original dataset. In this section, I
will outline how they were able to identify and isolate erroneous results.

In this view, the leftmost side of the display is almost entirely pale red, indicating
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Figure 5.12: TextDNA visualizing the top 1,000 words per decade between 1660
and the modern decade. Aggregating the data using event striping reveals several
uncommon words (blue) appear frequently (to the left of the display) in texts
between 1660 and 1800.

that the top 100 or so words in each decade all are popular in every other decade.
The relative uniformity among the first 100 words across all decades suggests
that, in general, the top 100 words and their order are relatively constant across
all 35 decades in the dataset. However, several outliers also pop out in this region
as blue stripes at the left of the display. These blue blocks indicate words that are
extremely popular, but are only popular in a specific subset of decades.

Zooming in on one of these blocks reveals that these words, like ’fo’ and ’alfo,’
are only popular in a small number of decades. Figure 5.13 filters words that occur
roughly as frequently as these throughout the dataset. Blocks that contain words
with this frequency stay opaque, those that do not are made partially transparent.
This filtering highlights an interesting pattern: there is a large cluster of red blocks
in the upper left of the main visualization that abruptly stops at 1800. These
words exhibit the same patternas the outlier words in Figure 5.12. No similar
patterns appear after 1800.

This swing suggests that there is a significant change in writing around this
time. While less popular words only appearing in the top 1,000 words in 40% of
the decades is not unusual—words “die” (fall out of popular usage) reasonably
frequently—highly common words tend to be those central to written English, such
as ’so’, ’the’, and ’and.’ The cluster of words contains a large number of examples
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Figure 5.13: Filtering words that appear in the 1,000 most popular in 13 to
15 decades. Words with this frequency pattern are opaque while other blocks
are made transparent. The opaque words form two clusters—one cluster of
popular words (upper left) before 1800 and a second of less popular terms (on
the right) after 1800. The crisp boundaries of the upper left cluster suggests that
something interesting might have happened in 1800 that dramatically influenced
word popularity.

of a typography convention: the ’Long S’ convention. Until 1800, typography
sometimes used an elongate ’s’ character in place of a traditional ’s’. To the OCR
used to process the Google N-Grams data, this ’s’ is interpreted as an ’f’, creating
words like ’fo’ and ’faid’ from ’so’ and ’said.’

Clustering these words together can help disentangle Long S words from
standard words that simply fell out of popularity. Ordering words by grouped
frequency clusters words by the subsets of decades in which they are popular.
Words popular in all decades are placed in the leftmost columns, and the words
in the subsequent columns are found in an increasingly smaller subset. Regions
of white within a decade indicate columns of words absent from that decade (e.g.
the rightmost columns are words unique to a single decade).

Coloring by popularity (’gene index’) maps the most popular words in a decade
to a dark red and the least popular to a dark blue. Words that are extremely
popular, but only in a subset of decades form red columns to the right of the
display. This allows us to closely identify major timeframes in which the Long S
typography convention was used (Fig. 5.14). While the leftmost red columns are
expected (they represent terms that are both popular and common to all decades),
there is also a column of words that are reasonably popular in all but one decade
from 1660 to 1800 and all but one from 1670 to 1800. These columns also appear
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Figure 5.14: Clustering words according to the decades in which they are popular
and coloring according to popularity (red words are more popular than blue)
clusters together candidate Long S words. Two columns (indicated by the purple
triangle) show that there are a large number of words that are popular between
1660 or 1670 and 1800 but do not occur in any subsequent decades. The analyst
can then zoom in on these regions to better understand how prolific this typography
convention is in the dataset.

to be predominantly composed of Long S terms. My collaborators have used this
data to develop heuristics for correcting for the Long S in their datasets.

Historical Patterns in Modern Words

Popular words change over time as a function of culture, historical events, and a
number of other factors. By comparing the popularity of words in past decades
to that of more modern decades, scholars can assess, for example, how quickly
written language is changing and what historical events significantly impact
modern writing.

One way to explore these patterns in TextDNA is by setting a decade of interest
as a reference. Figure 5.15 uses the most recent decade in the dataset (2000-2010)
as a reference. Words in purple are among the 1,000 most popular in that decade,
whereas orange words are not. Words are ordered according to their popularity
within each decade (most popular on the left) and color weaving aggregation is
used to emphasize aggregate patterns while still preserving regions with interesting
variation.
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Figure 5.15: Each row represents one decade, with 1660 at the top and the 2000s
at the bottom. Most popular words within each decade are on the left, least
popular are on the right. Words in purple are popular in the decade of the 2000s,
orange words are not. The shape of the orange and purple clusters that form
across decades reveal at a high-level how written language has evolved over time.

Visually aggregating data across color reveals an upper triangular pattern
across decades: an orange triangle in the upper left (less popular words) and
a purple triangle in the lower right. By visually aggregating the data to form
this pattern, viewers can estimate the approximate boundary between the orange
and purple triangles. This boundary provides an approximation of how quickly
words come into and fall out of popularity. As you look back in time, decades
have increasingly fewer popular words in common with the most recent decade.
Weaving reveals some variation (i.e. oranges in fields of purple and purple in fields
of orange) in this pattern that provides interesting areas for further exploration.

An angled band of light purple cuts across the center of the more recent decades
in the display. This suggests that several words that are less popular in the 2000s
may be words whose popularity has been steadily decreasing since the mid-19th
century. It also suggests that a significant portion of the terms that were popular
between 1660 and 1790 are not popularly used today, inclusive of the Long S
words from the previous section.



86

Figure 5.16: The relative popularity of words can provide interesting examples
that support high-level insights. For example, the shift between ’woman’ (pink
line) and ’wife’ (blue line) demonstrate how a historical event correlates with a
shift in written language. ’Woman’ increases dramatically in popularity after the
Seneca Falls Convention (1840s), becoming more popular than ’wife’ in the decade
where women steadily earn the right to vote in the US (1910s).

Anchoring High-Level Patterns in Specific Examples

While understanding aggregate patterns in word usage overtime supports a number
of analyses, scholars need to anchor these findings in specific examplars. For
example, the previous section illustrates how language generally changes overtime.
By anchoring this analysis in specific examples, scholars can start to understand
how key historical events may drive this change.

In Figure 5.15, among the least popular terms in 1660 is a single dark purple
word. This word represents a term that was extremely popular from 2000 to 2010
but barely in the top 1,000 most popular terms in 1660.

Zooming into this block shows that the purple term is the word ’women’.
Further interaction reveals that the term was popular in 1660, but did not again
enter the top 1,000 most popular until 1760. Interactively linking instances of
this block (adding lines between words) connects instances of the word in the
display.

Scholars can contextualize the increased usage of ’woman’ overtime by compar-
ing its popularity overtime to a similar term—’wife.’ The word ’wife’ is extremely
popular in 1660 and is in among the 1,000 most popular words in every decade of
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the dataset. However, its lighter purple color suggests that it is less popular than
the word ’women’ in modern writing. The analyst can again interactively connected
instances of ’wife’ using a line. The path of both connected terms reveals specific
information about the popularity shift of ’wife’ and ’women’ in relation to other
terms.

An analyst can isolate these words based on their relative frequencies—’wife’
appears in all decades, but woman does not—by coloring using grouped frequency
to distinguish between instances of ’woman’ (pink) and ’wife’ (blue). They can filter
on these terms to make their pattern more salient (Figure 5.16). Filtering reveals
a notable feature of this data: ’women’ becomes more popular than ’wife’ starting
around 1910, contemporaneous with women earning the right to vote in America.
Prior to this crossing, ’woman’ rapidly increases in popularity starting in 1840
(the decade of the Seneca Falls Convention) and this increase continues to the
modern day.

The example demonstrates how TextDNA can be used to anchor aggregate
insights with point-level examples—popular written words have steadily shifted in
popularity overtime (§5.2.1), and part of that shift may be attributable to historical
events.

5.2.2 Viewing Story Structure

Raw text data also forms a sequence—texts present words in a fixed order. TextDNA
can be used to analyze linguistic patterns within a text. In this example, I present
one finding my collarborators uncovered in the novel She: A History of Adventure.
The text was first filtered to remove stopwords, then grouped into its constituent
chapters.

My collaborators hypothesized that the novel had substantial linguistic shifts
as the novel progressed, but no method for exploring this hypothesis. By treating
the order in which a word appears in a text as its ’index,’ my collaborators were
able to use TextDNA to better understand this hypothesis.

Figure 5.17 depicts this text in natural reading order with each sequence
representing a chapter. Words are colored with respect to their order in the
chapter containing the climax of the novel. While the coloring (and therefore
the primary word usage) appears generally consistent thoughout the text, there
are two substantial structures containing relatively unique words. The first, in
the second chapter, is a large block of blue. This represents flashback events
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Figure 5.17: The raw text of She: A History of Adventure visualized using TextDNA.
Chapters are represented as rows, with words ordered according to their natural
reading order in the text and colored according to their position in the chapter
containing the climax of the story (green). This coloring reveals two areas with
unique wording: the blue area at the end of the second row and the yellow area at
the end of the reference. These structures correspond to the text where the main
plot is first established (blue) and resolved (yellow).

that establish the main plot of the text. The second, the yellow at the end of the
reference sequence, identifies the passage containing the primary climax of the
novel. These two chapter both have dramatically di�erent linguistic structure than
the remainder of the text, providing some evidence in support of my collaborator’s
hypothesis.

These two structure allow an analyst to “see” the novel’s structure at a glance.
Using TextDNA on raw text can highlight passages of potential interest, allowing
the analyst to aggregate the words of a text into a single image.

5.2.3 Discussion

Sequence Surveyor and TextDNA combine a perceptually-motivated colorfield
display, flexible mappings, selectable aggregation strategies, and interaction tech-
niques to provide overview visualization of multiple whole-genome alignments
and similar data types. The initial feedback from domain collaborators in both
biology and the humanities suggests that they are excited to have a tool capable
of allowing exploration at this scale.
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This design does not yet address all aspects of analysis in these domains. For
example, it provides no mechanism for displaying other data such as the certainty
of a mapping or annotations of the genes in biology, or the source passage or part-
of-speech labels in text analysis. Multiple selection, grouping, and conjunctive
filtering are all mechanisms that could enhance the interaction techniques to
widen the kinds of questions that can be explored easily.

Scaling to larger datasets poses new challenges. Handling longer sequences will
require better zoom mechanisms—the current mechanism is bound by screenspace.
Handling more sequences will require development of “vertical” aggregation strate-
gies to group sequences as well as interaction techniques for looking at detailed
comparisons across sets. Experience working with experts in both domains will
suggest a wider variety of questions that may require new view organizations to
present data. My collaborators are excited about the potential of overview tools
for presenting their data when they publish their findings. When and how to
leverage visual aggregation for expository applications where the target tasks are
known may di�er from the exploratory applications these tools were designed for.
Exploring this distinction is important future work.

These systems do, however, present examples of how visually aggregating large
collections of information matter for real-world analysis problems, and how designs
based on color can facilitate these tasks at larger scales than previous solutions.
The examples discussed here represent a sampling of the aggregate insights that
my collaborators have derived using these systems.

5.3 Scaling Up Molecular Visualization
Sequence Surveyor and TextDNA demonstrate the utility of color for aggregate
visual analysis for one type of data—one-dimensional sequences. However, data
can take a number of di�erent forms. In this section, I explore how the ideas
presented so far generalize to a broader variety of data types. Specifically, I
introduce a system for analyzing corpra of three-dimensional data from structural
biology that leverages the ideas and techniques discussed in Chapters 3 and 4.

The core challenge of structural biology is to understand how the form of
a molecule connects to its function. This is often accomplished by developing
computational models that predict locations on the surfaces of molecules where,
for example, one molecule will bind with another. These models are validated by
comparing their results with experimentally-derived ground truth. Inspecting
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these results on a single molecule is challenging as the data is bound to an
irregularly-shaped 3D surface.

My collaborators primary strategies for exploring validation results are to either
rely on statistical methods, which reduce performance to a single, decontextualized
number, or to visualize the data for one molecule at a time, and compare perfor-
mance across independent instances of the visualization program tiled across the
monitor. Detailed examination of the results of an experiment involving dozens of
molecules is prohibitive.

With collaborators in computer science and molecular biology, I developed
a system for exploring the results of classification validation experiments in
structural biology. The challenge is to provide an overview of the results of an
entire validation experiment with many molecules, allowing the viewer to identify
locations of interest, while retaining facilities for examining the specific details of
interesting sites. This approach allows biologists to explore algorithm performance
across a corpora of three-dimensional surfaces using a small-multiples view
designed to allow a viewer to see aggregate properties of individual molecules
as well as to identify details of interest that lead to these properties. While this
discussion will focus on the overview components, the overview is connected to a
detail view that provides specialized navigation controls over the 3D structures,
allowing regions of interest to be examined rapidly. See [Sarikaya et al., 2014] for
more information on the detail features of the system.

The overview approach outlined here is based on the idea that an overview
can be designed specifically for understanding aggregate properties over multiple
scales. Using 3D views of molecules for the overview is impractical, as they
require more space, more time to navigate each surface, and do not a�ord quick
summarization. Instead, I build on the work presented in Chapters 3 and 4 to
design two-dimensional representations of three dimensional classifier data that
allow the viewer to quickly assess results across an entire set of molecules. Visual
aggregation tasks for this application occur at multiple scales—my collaborators
need to understand performance over a single molecule, a set of molecules, or the
entire corpus. As in Sequence Surveyor, this system provides interactive reordering
and aggregate representation to facilitate di�erent kinds of visual aggregation
task.
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Figure 5.18: Visualization of a validation experiment for a DNA-binding surface
classifier. The corpus overview (left) is configured to display each molecule as
a quilted glyph and orders these glyphs by classifier performance to show how
performance varies over the molecules. Selected molecules (left, yellow box) are
visualized as heatmaps in a subset view (middle) and ordered by molecule size to
help localize the positions of errors relative to correct answers. The detail view
(right) shows a selected molecule to confirm that most errors (blue, red) are close
to the correctly found binding site (green).

Biological Background

Bioinformatics classifier experiments are common: for example, a recent survey
[Irsoy et al., 2012] notes several hundred papers per year, in just three bioinfor-
matics journals, involve presenting classifier validation results. The survey notes
that most of these papers report only simple statistics, at best providing statistical
confidence tests.

Better tools for exploring the results of these experiments could improve pre-
dictive model development and application. For example, identifying specific
molecules or classes of molecules where a classifier performs well may help in un-
derstanding the generality of the predictive model. Identifying false positives may
help in refining an algorithm. Patterns of false negatives may suggest alternative
mechanisms not represented or captured in the model training process.

The results of classifier validation experiments measure both predictive perfor-
mance and confidence in a prediction. A classifier makes a prediction (positive or
negative) marked by its correctness (true or false) for each location on a molecule.

This work demonstrates how the ideas surveyed in Chapter 3 can support
scalable aggregate analysis beyond one-dimensional data and introduces new
aggregate representations driven by the needs of this domain problem. While
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this approach is demonstrated in a specific application for examining molecules, I
believe that the contributions generalize to similar domains.

5.3.1 Task-Driven Overviews of Classifier Data

Experimental results for binary classifiers generate a large number of classification
decisions, each of which has one of four outcomes (true positive (TP), false positive
(FP), true negative (TN) and false negative (FN)), that form the binary confusion
matrix [Stehman, 1997]. While the data is simple, it grows quickly: experiments
generally are run over dozens of molecules, and there are tens to hundreds of
decisions for each molecule.

My goal is to provide an overview of the collection of decisions and their cor-
responding experimental results. The overview should both show overall perfor-
mance and help identify the specific molecules, and even parts of molecules, for
which the classifier performs well or not. For instance, it should allow the viewer
to assess whether performance is uniform across all molecules or variable, to
identify groups of molecules that perform similarly, to identify performance out-
liers or anomalies, or to see aggregate patterns of performance between molecules.
These assessments can occur at di�erent scales within the data. For example, an
anomaly might be a particular molecule whose performance skews results, or a
family of molecules skewed by concentrated groups of false negatives.

My approach uses two main ideas to support these requirements. First, it
emphasizes flexibility, allowing the viewer to reconfigure the display to suit their
task. It allows for interactive reordering to generate meaningful performance
clusters and interactively specifying di�erent sets of molecules for exploration.
As in Sequence Surveyor, the system supports interactively switching between
di�erent glyph designs that support rapid visual aggregation and processing of
di�erent properties of the data. These design allow the viewer to see both the
aggregate properties of the data and low-level details that form these aggregates.

5.3.2 Reorderable Small-Multiples Design

The overview visualizes classifier results from corpra of molecules using a small-
multiples display, where each molecule is shown as a small glyph in a grid. Glyphs
abstract data from the molecular surface into a two-dimensional representation.
As three-dimensional representations complicate visual aggregation for reasons
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(a) Histograms sup-
port proportional com-
parison.

(b) Confusion
treemaps show
weakly represented
classes.

(c) Heatmaps show
proportions and
structure.

(d) Quilted blocks
show summary statis-
tics preattentively.

(e) Cluster plots show
spatial cluster sizes.

Figure 5.19: Five overview glyphs support di�erent summaries of performance for
classifier performance data.

discussed in the next section, data is instead summarized using a space-filling
two-dimensional glyph.

Di�erent designs for the glyphs are provided (described below), but they share
features that allow for preattentive summarization. Each glyph relies heavily on
color encodings in order to support summarization and pop-out, and the regular
ordering of the glyphs helps support visual search. Each glyph has a gray border
whose lightness gives an indication of the overall performance (MCC score, with
darker borders representing a higher value).

The small multiples can be reordered to explore di�erent types of questions.
For instance, ordering by performance (e.g. accuracy or MCC) places molecules
with similar performance together and allows for rapidly identifying strong and
weak performers. Ordering by molecule name facilitates finding a specific item of
interest. Ordering by metadata (properties of each molecule) emphasizes correla-
tions between that property and performance. Coupling the di�erent orderings
with di�erent glyph designs provides a wide range of configurations to support
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various questions. For example, sorting by the size of the molecule and choosing
an appropriate glyph type can not only show whether large molecules perform
better or worse than others, but can also indicate whether the errors form large
groups on the molecules.

The overview provides some basic interaction features that directly support
common tasks. Selecting a glyph can open the molecule in the detail view for
closer examination. Sets of glyphs can be selected and opened in a new overview
window, allowing for more localized analysis of subsets of the dataset. The user
can annotate the glyphs in order to track which molecules have already been
examined or should be explored in greater detail.

5.3.3 Glyph Design

Glyphs abstract classifier performance data from the surface to a two-dimensional
representation. Visualizing large corpra of data limit the screenspace available to
visualize each molecule within the corpra—making complex three-dimensional
shapes di�cult to see. Additionally, because at least half of the molecule is oc-
cluded, some form of navigation or surface unfolding would be required to evaluate
performance over the entire surface. The highly irregular shapes of molecules, with
their significant pockets and protrusions, make meaningful flattening di�cult.

Instead, I leverage nonspatial two-dimensional views that sacrifice informa-
tion about spatial arrangement in order to remedy problems inherent in three-
dimensional views. Further, these views can be designed to facilitate rapid visual
comparisons both within an element and between multiple elements. This system
leverages color as the dominant channel to encode classification decisions to
support rapid visual processing at scale, mapping TP to green, FP to blue, FN to
red, and TN to gray.

This color mapping leverages salience to support classifier analysis tasks by
considering a priori characteristics of the data and task—TN are extremely common
in the data and are mapped to gray to decrease their saliency, while FN represent
highly undesirable classifications that generally require attention and are mapped
to red to aid pop-out. TPs map to green based on conventions familiar to my
collaborators. At an overview level, mapping data to a categorical, rather than
continuous, coloring not only follows established visualization practice [Brewer
et al., 2003b], but also may improve performance on some visual aggregation
tasks—the visual system can more e�ciently select datapoints that are more
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discriminable [Duncan and Humphreys, 1989].
This system allows the user to switch between di�erent glyph designs in order

to configure the display to their task. Each design supports certain kinds of visual
queries.

Histograms (Figure 5.19a) are a standard encoding and are useful for showing
the precise performance distribution within a specific molecule. However, they
become harder to interpret when a single class dominates, and do not necessarily
a�ord e�cient visual aggregation as well as color.

Confusion Matrix Treemaps (Figure 5.19b) sacrifice some of the inter-class
fidelity of histograms, but better show weakly represented classes and make better
use of space to a�ord preattentive size judgements between elements. A vertical
divider delineates the proportion of correct classifications (left side), and incorrect
classifications (right), providing a quick indication of the predictive accuracy.

Heatmaps (Figure 5.19c) encode the data from each decision using small patches
visualized in sequence order, similar to a colorfield (§4.3). Because the size of
the patches in a glyph is inversely proportional to the number of decisions in
the corresponding molecule, this display gives a sense of the molecule’s size.
Averaging (§4) and proportion estimation [Correll et al., 2013] are supported by
the color encoded design. As residue sequence order is related to spatial proximity,
this view can also provide some insight into how the various points are grouped
along the surface.

Quilted Blocks (Figure 5.19d) are essentially two-dimensional color woven blocks
(§Designing Aggregate Visual Encodings)—the image is similar to the heatmap
glyph permuted at the pixel level. This representation exchanges structural fidelity
to make preattentive summary statistics, such as mean and variance, easier to
access (Chapter Task-Driven Aggregation for Sequence Data) and to help highlight
performance patterns at the molecular level. Further, the visual system’s ability
to readily average quilted glyphs may also help blocks of unusual performance
pop-out.

Cluster Plots (Figure 5.19e) use a squarified treemap representation [Bruls et al.,
2000] to indicate groups of similar classes that are spatially clustered on the
surface. While the glyph does not convey the positions of the groups, it does
convey their number and size.
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Figure 5.20: An overview of DNA-binding classifier performance for 216 molecules.
The overview window (left) displays the corpus rendered as heatmaps (§5.3.3),
giving an idea of aggregate performance across the corpus. Glyphs are sorted
by statistical performance (MCC score), with top rows corresponding to high
performing molecules (dark grey borders) and bottom corresponding to poorly
performing molecules (white borders). At all levels of performance, the classifier
generally fails with high confidence for false negatives (red) and low confidence
false positives (pale blue) as shown in the subset image on the right. The heatmap
allows high confidence false negatives to readily pop-out.

The overview can visualize either raw binary decisions (positive or negative) or
supplement these decisions with the respective confidence of each decision. The
viewer can optionally show the algorithm’s confidence in each prediction in the
heatmap and quilted displays. When visualizing confidence data, each of the four
colors is replaced by a three-step sequential color ramp in the same hue drawn
from Colorbrewer [Harrower and Brewer, 2003].

5.3.4 Case Studies

This section outlines two case studies in which this system supported classifier
prediction analysis at scale. The datasets consist of a DNA-binding classifier with
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(a) PDB: 2I05_A is well-classified by DBSI.
A large pocket (green) holds DNA sur-
rounded by false negatives and false pos-
itives.

(b) A region cluster plot shows proteins
with similarly sized false positive and
true positive regions.

(c) PDB: 2W7N_B shows large region of
false positives adjacent to the predicted
binding site.

(d) PDB: 3FDQ_A; a large cluster of false
negatives forms an irregular binding site
shape, consistent with other proteins.

Figure 5.21: Analyzing the spatial clustering of a DNA-binding classifier provides
insight into how biochemists could improve prediction performance.

a test corpus of 219 proteins (Figure 5.20) and a calcium-binding classifier with a
test corpus of nine proteins (Figure 5.22). Prior to our tool, assessment of results
was done by looking at tables of statistics, and by loading surface colors into
standard molecular graphics tools.

5.3.5 DNA-Binding Classifier

Figures 5.20 and 5.21 show a validation experiment for DNA-Binding Site Identifier
(DBSI)—a model that predicts if DNA will bind to di�erent residues on a protein’s
surface ([Zhu et al., 2013]). Ground truth labels indicate that DNA has been found
to bind to the protein structure within five Angstroms of the residue. The model
performs well according to traditional summary statistics, including F1 and MCC
scores. However, my collaborators wanted to explore predictive performance at
scale in order to further refine the classification algorithm.
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(a) Confusion treemaps
shows the calcium-binding
classifier overestimates po-
tential binding sites.

(b) Classification for PDB:
3ICB_A with a decision
boundary of 0.0 (left) and
2.61 (right).

(c) A heatmap overview
with a decision boundary
of 2.61 shows fewer false
positives, suggesting the
possibility of multiple bind-
ing mechanisms.

Figure 5.22: Analysis of a surface descriptor-based, calcium-binding classifier.
Modifying the decision boundary indicates that calcium may bind in multiple
environments not adequately generalized by the classifier.

Figure 5.20 shows the DBSI test set (219 proteins with 41–932 residues each).
Using an overview with quilted blocks ordered by statistical performance (MCC)
shows three di�erent types of errors made by the classifier. Molecules with good
overall performance have large numbers of true positives with some FN and FP.
Molecules with middling performance mostly generate large false positive regions.
Poorly performing molecules generally have large numbers of false negatives.

Region cluster plots reveal a consistent pattern for molecules with several false
positives. These molecules have large TP regions with many small incorrectly
classified regions. Examining these clusters in detail (e.g. Figure 5.21a) shows
that the small errors usually surround a correctly identified site. These “near-
misses” are unlikely to be meaningful in practice—precise localization is di�cult
because proteins are dynamic—but suggests that considering spatial grouping
may improve classifier performance.

Molecules with large numbers of false negatives also suggested areas of im-
provement for the classifier. False negatives, when viewed in detail often clustered
together to form a long narrow shape (Figure 5.21d). This error points to a poten-
tially interesting biological consideration—instead of the typical binding scenario
where the protein envelopes the DNA, the binding sites instead seem to tuck
themselves into the grooves of DNA.

These observations show how identifying aggregate molecular performance can
help a biologist better understand data across a corpra of molecules. Each would



99

have been di�cult, or impossible, to make with the traditional approach of tables
of statistics and manual inspection.

5.3.6 Calcium-Binding Classifier

The second application uses the system to validate a calcium-binding classifier
based on surface descriptors [Cipriano et al., 2012], but using a simpler machine
learning approach than in the original paper. The validation experiment had 11
proteins. As decisions were made for each vertex in the molecular mesh, each
molecule had between 11,000 and 63,000 datapoints.

This classifier performs poorly over the test corpus (MCC: 0.163, Fig. 5.22a).
A large number of false positives (blue) are readily apparent in the overview—
the classifier overestimates the number of binding sites. Adjusting the decision
boundary of the classifier to be more conservative (Fig. 5.22b, right) better captures
the true binding sites for some molecules. However, adjusting this boundary for
the entire test corpus causes entire binding sites to be missed (red, false negatives,
Fig. 5.22c).

Returning to the overview reveals a large number of small binding sites, sug-
gesting that calcium may bind to multiple locations on the molecular surface.
However, the variation in performance caused by manipulating the decision bound-
ary implies that a simple model is insu�cient to characterize all of the ways that
calcium may bind. More complex or ensemble models are necessary to capture
this variation.

5.3.7 Discussion

This section introduces an approach for exploring protein surface classifier valida-
tion results. The approach couples two-dimensional overviews of three-dimensional
data with a detail view for examining this data in context. The overview helps not
only to identify aggregate patterns of performance across the corpus, but also
helps biologists search for molecules with interesting performance patterns.

The overviews emphasize perceptual support for visual aggregation tasks to
both understand performance for a single molecule as well as across multiple
molecules. As a result, the overview does not provide any summary glyphs that
convey the relative spatial layout of disjoint classifications. For example, none of
the current encodings can show that the false classifications occur close to true
ones.
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To date, the evaluation of this approach has been limited to a few anecdotes and
use cases. While specific elements of the design could be evaluated in controlled
studies, direct assessment of the overall approach is more challenging. Tests on
controlled data sets can allow the confirmation that users can actually identify
the kinds of performance patterns our system is designed to expose. However, a
better validation of our approach will be its success at helping in the design of
more e�ective classifiers.

Even in our initial use cases, the system has helped reveal insights into the
physical groupings of the classifications on protein surfaces. Overviews allowed
identifying trends and selecting examples to explore in detail, helping biochemists
readily understand aggregate performances in their data and helping molecules
with interesting overall performance readily pop-out.

5.4 Discussion
In this section, I outlined three systems that leverage color to support visual
aggregation in real-world analyses. Each of these systems substantially increased
the scale of data analysis beyond previous methods and demonstrated the utility
of their component designs through a series of case studies. These case studies
demonstrate how the systems facilitated new insight into complex data.

However, these systems only provide initial verification of the broader focus of
this section: that color encodings in data visualization support visual aggregation
and increase visualization scalability. The systems provide evidence in support of
this claim for real-world examples, but these comparisons are neither empirical nor
exhaustive. Most of the case studies discussed in this section were generated while
actively working with users to help them explore their data. Further qualitative
testing is needed to formally verify the utility of these methods at scale and better
understand their overall limitations. They are instead intended to begin a new
dialog about the utility of color for visualization beyond single-value tasks and
how the concept of visual aggregation can inspire new approaches to visualization.

A better understanding of the wealth of designs that can support visual aggre-
gation tasks and of the kinds of aggregation information users may be interested
in would have immense utility for visualization designers as datasets continue
to increase in scale. In work outside of this dissertation, I am working with
collaborators to explore the space of visual aggregation tasks and understand how
these tasks can lead to new questions for researchers in both visualization and
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psychology.
Part of this understanding could better information how di�erent designs could

support a breadth of visualization tasks. Interactively specifying glyphs within
each of the systems discussed here provides flexibility in design, but requires
the user to make informed configuration choices. While e�orts such as those
presented in Chapter 4 provide some guidance for matching these glyphs to task, in
my experience, the most common factor in using a glyph is the user’s preferences
based on visual appeal.

This first portion of this dissertation has established a theoretical basis grounded
in perception for using color to support the visual aggregation of information at
scale. This basis informed the design a several perceptual glyphs for flexibly
aggregating one-dimensional information. I validated the assumptions made in
the design of these glyphs through a series of experiments matching visualiza-
tion designs to visual aggregation tasks. The results of these studies highlights
di�erences between recommendations made in traditional graphical perception
studies and the types of encodings that may support visual aggregation. To verify
the scalability of these results, I applied these techniques to three real-world
applications, resulting in systems that support analysis at scales significantly
larger than previous approaches. These systems provide proofs-of-concept that
allow designers to realize about designing for visual aggregation at scale, and I
hypothesize many other potential designs exist.

Collectively, the theory, methods, experiments, and systems presented in this
first part of the dissertation provide substantial evidence for the utility of color for
supporting visual aggregation at scale.



Part II

Considering Color in Practice for
Point Tasks
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While visual aggregation is critical for designing scalable visualization systems,
e�ective visualizations support data understanding at both at the aggregate and
point levels of detail. For example, in the molecular visualization system discussed
in the previous chapter (Section 5.3), a biochemist can identify interesting aggregate
performance patterns from the aggregate overview, but will often still want to
explore performance over specific molecules in detail. In doing so, they can
understand the structural contexts behind where an algorithm is underperforming
or identify alternative properties that may explain performance.

Using color across both large and small scales can help an analyst remain
oriented as they move through data at multiple scales—the information is rep-
resented consistently across di�erent levels of detail. Designs using color may
support visual aggregation e�ectively, but color is less e�ective at small scales,
where tasks generally compare individual datapoints [Cleveland et al., 1985]. For
example, identifying spots of performance across four categories is easy—the
viewers can readily identify blues, greens, and reds. The challenge arises when
encoding quantitative data, such as confidence in classifier predictions, where
di�erences between steps in an encoding are more subtle (c.f. Fig. 6.1). There
are many potential challenges to using color to encoding quantitative data. For
example, the visual system can only detect a limited number of colors [Ware, 2000]
and factors of a visualization design, such as background color [Mittelstädt et al.,
2014] or mark sizes [Carter and Silverstein, 2010], influence viewers abilities to
correctly identify color. This means performance may degrade as analysts make
increasingly precise judgments about information encoded using color.

A large part of why color encodings fail is that how designers use color is
directly informed by metrics from colorimetry, such as HSV and CIELAB (see
Stone [2004] for a survey). HSV focuses on how colors will be displayed rather
than perceived. Perceived lightness, which is often critical in color ramp design,
and precise relationships between colors are not well predicted by this model.
Color di�erence metrics, like CIELAB, are designed to understand the sensitivity
of the human eye rather than how designers might create e�ective encodings.
While these metrics capture perceived di�erences well, they measure perceived
color in isolation under heavily controlled conditions [L’Eclairage, 1978]. They do
not consider aspects of color presentation that might degrade perceptions, such
as complex artificial surfaces, web-viewing, or variable mark sizes. In this part
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of my dissertation, I show how visualization designers can create visualizations
that better support point tasks using color by measuring and modeling color
perceptions for visualization.

Designing visualizations that use color e�ectively can be accomplished in one of
two ways. First, designers can tune other parameters of a visualization to support
accurate color interpretations. Second, designers can construct color encodings
that are robust to other constraints of a visualization. In this chapter, I will focus
on the first method. I will show how designers can create visualizations that
improve accurate color identification using color for molecular surfaces, where
color encodings can be complicated by surface shading used to convey shape
and structure. In the following two chapters, I will explore the second approach.
I will explore how designers can create color encodings that are e�ective for a
given visualization context by designing for an intended use context (web viewing,
Chapter 7) and for specified constraints on mark size (Chapter 8). Please note
that many of the examples in the remaining chapters use subtle color di�erences
designed to be viewed in digital displays. The figures may not appear correctly in
print.

6.1 Overview
Color is an intuitive and commonly used channel for visualizing data directly
on three-dimensional surfaces. Color encodings can intuitively represent data
within the context of a surface. Visualizing data in context is especially critical
for surfaces such as molecules, where functional and structural features provide
a meaningful sca�old for understanding charge, binding sites, protein-protein
interfaces, and other data.

However, shading models used to render surfaces directly impact color encod-
ings: shadows and shading manipulate color to convey depth, resulting in a conflict
between representations of shape and data. Surface features, like pockets and
loops, often hold interesting areas for exploration, but tend to be the most deeply
shadowed. Misinterpreting color encodings in these regions adversely impacts a
visualization’s e�ectiveness, but removing surface shading impairs perceptions
of surface depth and shape. By understanding how visualization design impacts
how accurately viewers can read colors from shaded regions, designers can create
surface visualizations that better support both shape and data comprehension.

Reading color-encoded scalar data from the surface of a molecule requires
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Encoded
 Color
L = 44

Expected
Perceived

L = 32

Shadowed
Pixel Value

L = 11

(a) Actual and per-
ceived color of the
pocket

(b) Ambient Occlu-
sion

(c) Ambient Occlu-
sion + Directional
Lighting

(d) Ambient Occlu-
sion + Contours

Figure 6.1: Our findings, exemplified by hydrophobicity data in the shadowed
regions above, show that visualization design significantly impacts viewers’ abilities
to read data encoded on a surface. (a, b) Ambient occlusion surfaces support
viewers in reading shadowed data, which is improved by (c) directional shading.
Conversely, (d) stylized shape cues may hinder this ability.

matching colors against a legend or key. Because the image color of the data on
the surface depends on shadows and shading, the apparent color of the data may
not be the same as the unshaded key color in the legend. In this work, I explore
how visualization design a�ects viewers’ abilities to match shadowed image colors
to the corresponding unshadowed color in a key. In the real world, this task would
be enabled by lightness constancy—the ability of the visual system to use various
visual cues to disentangle color and shadow. Lightness constancy is well studied
in perceptual science, and a number of theories and models exist explaining how
the di�erent visual cues contribute to this ability. However, these models focus on
explaining constancy in real world or simple synthetic scenes (see [Kingdom, 2011]
for examples). They provide little guidance in how the mechanisms for interpreting
surface colors may be a�ected by the stylized or simplified techniques used to
render interactive complex surfaces in visualization. Lightness constancy is also
sensitive to a variety of visual factors: in studies, simply moving from the real world
to a virtual image has significantly impaired constancy [Olkkonen et al., 2009].
Techniques commonly used in visualization, such as ambient occlusion lighting
[Landis, 2002], may remove many visual cues that theoretical work indicates are
used for lightness constancy, such as lighting direction [Ruppertsberg et al., 2008].

In this work, I derive inspiration from lightness constancy to understand how
visualization design can support surface visualizations that e�ectively leverage
color encodings. In a series of experiments, I measure color-matching perfor-
mance for molecular surface visualizations rendered using ambient occlusion. I
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confirm that viewers can read color encodings in shadow with some accuracy for
simplified rendering methods often used in visualization, but that how the surface
is visualized directly influences the strength of this ability. The visualization
techniques used to render a surface can significantly improve or inhibit viewers’
ability to correctly interpret shadowed colors. Our results point to a correlation
between techniques that enhance depth perceptions and improved performance
in interpreting shadowed colors. These results can guide designers in creating
surface visualizations that more accurately depict shadowed data. They also
illustrate trade-o�s for designing surface visualizations using color. Given the
complex and unfamiliar structures of molecular surfaces, I anticipate that these
results could be applied to visualizing surfaces in other domains. A summary of
results is presented in Figure 6.1.

6.1.1 Background

Visualization allows analysts to explore data in the context of a surface by mapping
visual representations of data onto a rendering of the surface. The resulting image
combines a number of di�erent visual factors to support data analysis. The visual
system has several di�erent constancy mechanisms that account for variation in
visual factors. Color constancy, for example, allows viewers to resolve colors under
di�erent lighting conditions. It has three principal elements [Foster, 2011, Newhall
et al., 1958]: lightness constancy, hue constancy, and saturation constancy. All
three components can be used to encode data along a surface [Ware, 2000].
Supporting their constancy allows visualization designers to use these channels
e�ectively. In this section, I focus on lightness constancy as it allows the visual
system to account for luminance variations underlying the shadows and shading
that convey surface structure.

Perceptual psychology has established models to explain how lightness con-
stancy functions account for changes in illumination in the real world [Brainard
and Freeman, 1997, Bressan, 2006, Gilchrist et al., 1999, Kingdom and Moulden,
1992, Land et al., 1977, Rudd, 2010]. Existing theories hypothesize that proper-
ties such as contrast ratios between light and shadow [Cataliotti and Gilchrist,
1995, Rutherford and Brainard, 2002], shadow intensity [Newhall et al., 1958],
lighting intensity [Grossberg and Hong, 2006], lighting direction [Ruppertsberg
et al., 2008], object colors and reflectance [Cataliotti and Gilchrist, 1995, Granzier
et al., 2009] and spatial cues [Allred and Brainard, 2009, de Almeida et al., 2010,
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Hedrich et al., 2009, Olkkonen et al., 2008a] may all contribute to the brain’s
ability to disentangle an object’s color from the lighting used to illuminate it.
For example, the visual system may identify a luminance value in a scene, such
as the lightest or average luminance value, as an “anchoring point” and adjust
all residual colors accordingly [Kingdom, 2011]. The brain may also adapt to
lightness di�erences in smaller spatial regions of a scene and adjust perceptions
to maximize these local contrasts, in essence increasing the perceived dynamic
range of the scene [Grossberg and Hong, 2006].

This prior work focuses on perceptual mechanisms, quantifying constancy
as a function of low level visual features under highly controlled conditions for
both artificial and naturally-occurring scenes. Studies of constancy in digital
environments generally use simple stimuli, such as two-dimensional images (e.g.
flat square planes or collections of randomly sized and colored rectangles that form
“Mondrians”) or checkerboards overlaid on simple three-dimensional shapes (e.g.
cubes [Adelson, 1993, Agostini and Galmonte, 2002, Logvinenko, 1999] or creased
rectangular planes [Adelson and Pentland, 1996]). It is unclear how these findings
translate to visualization applications, where complex surface structures are
often illuminated using approximated and stylized lighting models (e.g. ambient
occlusion).

Surface visualizations commonly use ambient occlusion [Landis, 2002] to
approximate global illumination Several properties of this illumination model may
inhibit or even remove visual cues that are hypothesized to facilitate lightness
constancy. For example, many theories suggest that lightness constancy relies
largely on backcomputing color changes in a scene based on overall lighting and
reflectance properties [Foster, 2011]. This idea of “estimating the illuminant”
depends on the existence of measurable lighting contributions, including direction
and relative intensity. However, ambient occlusion synthesizes equal light from
all directions—the resulting illumination is directionless and of uniform intensity.
This might inhibit lightness constancy and reduce viewers’ abilities to interpret
shadowed colors.

Most of what we know of constancy is based on identifying grey-scale colors
under di�erening levels of illumination viewed under controlled conditions (see
Kingdom [Kingdom, 2008] for a survey of experiments considering color). In
surface visualization, color ramps are not grey-scale, but often communicate data
values through variation in hue, lightness, and saturation, and viewed under a
variety of conditions.
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(a) Di�use Directional Lighting (b) Di�use Directional Lighting plus
Ambient Occlusion

Figure 6.2: Depth perception of a surface using (a) local illumination can be greatly
enhanced by (b) adding ambient occlusion shading, which emphasizes the shape
of structural features such as pockets.

The measures generated by perceptual models are not focused on providing
feedback for designers; instead they quantifying mechanisms of the visual system,
operating over specific visual features. These limitations make it di�cult to apply
these models to visualization: it is unclear how they inform whether di�erent
designs will su�ciently increase the e�ectiveness of a visualization. I consider the
e�ects of lightness constancy as a measure of visualization e�ectiveness. I seek
to understand how common visualization techniques influence how accurately
viewers interpret surface colors in shadow.

6.2 Molecular Visualization
Molecules can be visualized in many di�erent ways: as atomic representations
[Corey and Pauling, 1953], stylized moieties [Pauling et al., 1951], or functional
surfaces [Lee and Richards, 1971, Richards, 1977]. I focus on solvent-excluded
surface models, which are commonly used in conjunction with color encodings
to display molecular data in context (see DeLano [2002], Sarikaya et al. [2014]
for examples). Data such as charge, binding a�nity, and machine learning
results are projected across these surfaces to increase the functional and spatial
understanding of the dataset. Color is often used to visualize this data in popular
systems like VMD [Humphrey et al., 1996], Pymol DeLano [2002], and BioBlender
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[Andrei et al., 2012]. While the structural features of the solvent-excluded surface
present visually interesting aspects of the surface for such investigations, surface
shadows (which use grayscale color to convey depth) may be problematic when
using color to encode data. Recent e�orts have explored alternative techniques
for visualizing heavily shadowed regions of surfaces, such as opacity reduction
[Borland, 2011] and volume segmentation [Krone et al., 2011]; however, these
methods focus only on deep pockets and reduce the visual quality of the overall
surface to emphasize these pockets. Interactive techniques for exploring surfaces
are also problematic for shadowed data—viewers may incorrectly interpret values
obscured by shadow, making it di�cult to accurately identify interesting regions
to explore.

Although shape and shadow complicate color encodings, they are important
for communicating spatial properties of the surface (Fig. 6.2). Recent research
in volume rendering has explored how di�erent shading models impact viewers’
depth perceptions in visualization. Although they focus on volume visualization,
the studies provide useful general insight into surface perception. For example,
Lindemann and Ropinski [2011] evaluated seven lighting models to derive design
suggestions for e�ective depth-based rendering. More recently, Grosset et al. [2013]
demonstrated how subtle changes to a depth cue (depth of field) can significantly
influence perceptions of a volume. Such research empirically evaluates common
design decisions to confirm how di�erent design choices impact perceptions of
structural features in a 3D visualization. These experiments do not consider how
these choices influence perceptions of color or other visual encodings.

Ambient occlusion is commonly used to convey depth in molecular surface
visualizations in both research [Cipriano and Gleicher, 2007, Tarini et al., 2006]
and production tools [Andrei et al., 2012, DeLano, 2002]. Ambient occlusion
approximates shadows on a surface by assuming a constant light emitted from all
directions, measuring the percentage of possible lighting directions visible from a
given surface point, and attenuating the surface color at that point accordingly
[Landis, 2002]. This provides a pre-computed approximation of shadow that
conveys depth comparable to directional lighting models [Langer et al., 2000]. Yet,
it often fails to convey subtle shape variations and is therefore often supplemented
by other shape and depth cueing techniques such as di�use illumination [Tarini
et al., 2006], contours [Cipriano and Gleicher, 2007, Tarini et al., 2006], and
haloing [Tarini et al., 2006] in molecular surface visualization.

I explore lightness constancy for molecular visualizations rendered using ambi-
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ent occlusion. I focus on how visualization design influences constancy to support
accurate performance on a color matching task.While the ensuing studies measure
viewer performance on solvent-excluded molecular surfaces, I anticipate that the
findings of this study, summarized in Figure 6.3, are extensible to visualizing of
more general classes of surfaces.

6.3 Motivation and Overview
The way data are represented directly influences how accurately viewers interpret
visualized data. For example, the rendering methods used to create a volume visu-
alization impact perceptions of surface depth [Lindemann and Ropinski, 2011]. In
visualization design, there is often a trade-o� between how closely a visualization
reflects the real world and how e�ciently it can be rendered. We may choose to
make this trade-o� for many reasons, such as supporting interactivity, rendering
on devices with di�erent computational resources, or emphasizing certain prop-
erties of an object. By understanding how di�erent visualization design choices
influence how accurately visualized data is perceived, designers can begin to
systematically reason about these trade-o�s to design visualizations that support
specific tasks.

Here, I explore how di�erent design techniques for visualizing surface data
influence how accurately viewers interpret shadowed data. I focus on visualizations
rendered with ambient occlusion as it is commonly used to convey surface depth
and shape without the computational overhead of more complex shadow rendering
techniques. Ambient occlusion computes the shading values for a surface once,
and those values remain constant regardless of the position of the surface. It
exchanges many aspects of real world lighting captured by more complex global
illumination models (e.g. interreflection in radiosity, lighting direction from cast
shadows), which must be recomputed whenever the position of the light changes
relative to the surface, for computational tractability. This trade-o� can improve
performance for interactive visualizations.

Ambient occlusion supports perceptions of surface depth using shading to
simulate shadows. When a data value is encoded as color on an ambient occlusion
surface, shading makes the pixel value of the image color on the surface darker
than the original encoded color. For shadowed objects in the real world, lightness
constancy enables viewers to disentangle colors from shadow. Many properties
of more complex global illumination models are known to contribute to these
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Mean Response
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Pixel Value

(S1) Shadowed colors
on ambient occlusion
surfaces generally appear
lighter than the corre-
sponding shadowed pixel
value.

(S2) Simultaneous contrast
between shadow and color
does not fully explain view-
ers’ abilities to read shad-
owed colors.

(S3) Shadow rendering is
important to accurately in-
terpreting color on a sur-
face: incorrect shadows re-
duce constancy e�ects.

(S4) Viewers can distin-
guish between shadowed
colors for common color
ramps.

(S5) Directional lighting
and stereo improve partici-
pants’ abilities to interpret
shadowed colors.

(S6) Contours reduce how
accurately viewers can
shadowed colors.

Figure 6.3: We explore how visualization design influences viewers’ abilities to
accurately read shadowed colors in surface visualization. We first verify that
viewers can interpret shadowed colors on ambient occlusion surfaces and that
surface shading and structure supports this ability. We then explore how di�erent
surface visualization techniques might improve or impair performance. These
results can help inform the design of e�ective surface visualizations.

constancy e�ects, such as directional lighting, cast shadows, or interreflectance
of light along the surface. Given the prevalence of ambient occlusion in surface
visualization, I want to understand if this lighting can support accurate color
interpretation in shadow and what aspects of visualization design influence these
e�ects for surfaces rendered with ambient occlusion.

The studies presented here represent first steps in this exploration. The goals
of this work are to (a) establish that viewers can accurately read shadowed surface
colors from ambient occlusion surfaces, and (b) reason about the trade-o�s in
this ability for common surface visualization designs. These studies address
these goals by answering six specific research questions (addressed in studies S1
through S6). Like Anderson and Winawer’s approach to analyzing the causes of
constancy [Anderson and Winawer, 2008], I consider how di�erent design layers—
visualization design decisions that influence the presentation of a surface—may
influence performance on a color matching task. I begin by verifying that ambient
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occlusion surfaces can support lightness constancy e�ects (S1) and that these
e�ects are a function of visualization design rather than contrast between data
and shadow (S2). This verification suggests that viewers can interpret shadowed
data with some accuracy and that the design of a visualized surface may influence
this ability.

Once these properties are verified, I then explore how the shadow computation
itself influences performance (S3). Specifically, I show that some simplifications
of shadow models may hinder the interpretation of shadowed colors.

The ability to correctly infer the luminance of shadowed surface colors is
imperfect: viewers still make more errors in interpreting unshadowed surface
colors than shadowed colors. However, I find that performance in color matching
tasks is still higher when luminance cues are included in the color mapping, as
in most common practice color scales, than for hue and saturation alone (S4).

Surface visualizations often combine other visualization techniques with am-
bient occlusion to enhance perceptions of the depth and shape of a surface. In
order to understand the trade-o�s involved in these design decisions, I compare
viewers’ abilities to interpret shadowed colors when adding directional lighting,
stereo cues, and suggestive contours. The results suggest that designs correlated
with depth cueing (directional lighting and stereo) allow viewers to more accurately
identify shadowed surface colors (S5), while stylized contours, which enhance
shape percepts at the expense of shadow percepts [Kennedy and Bai, 2000], reduce
performance (S6).

These studies, discussed in detail in the ensuing sections, collectively suggest
that visualization design influences how well viewers’ can read surface colors, and
that there is a correlation between designs that support perceptions of surface
depth and those that e�ectively communicate shadowed data. A summary of
specific results is provided in Table 6.1. This work serves as first steps in mapping
a design space for understanding lightness constancy in visualization.

6.4 General Methodology
I evaluated the relationship between color matching performance and surface
visualization design through a series of color matching experiments. Each ex-
periment required participants to match a data value encoded as color on a
surface to its original color in a provided ramp. All experiments followed the
same general procedure. Any variation from this methodology is discussed in
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Figure 6.4: We mapped colored patches to three levels of shadow. Colored patches
applied to molecular surfaces rendered using ambient occlusion gauged perfor-
mance for molecular surfaces (top), whereas 2D squares (bottom) measured e�ects
due to contrast with the surrounding shadow.

detail for each experiment. The manipulated design component was treated as a
between-participants factor in all but one experiment (§6.7.2).

Participants were first screened for color vision deficiencies using digital ren-
derings of Ishihara plates [Hardy et al., 1945]. Only participants who passed
this screening were allowed to proceed, and a post-hoc questionnaire was used to
further verify normal color vision. Participants were instructed that they would
see a series of images with colored patches placed under di�erent levels of shadow
and would be asked to match the original color displayed in the image to a provided
color ramp. A pair of example problems were provided to help illustrate the task.
Participants were then shown 32 500 ⇥ 500 pixel stimulus images presented in
a random order with the corresponding seven-step color ramps immediately to
the right of the stimulus (Fig. 6.4). Participants recorded the color in each ramp
they felt best corresponded to the shadowed patch by clicking on a color from the
ramp and clicking a “Submit” button to move to the next stimulus. To mitigate
adaptation e�ects, participants saw a gray screen for three seconds between
respective stimuli (duration was selected through pretesting). Participants were
given unlimited time for each response.

6.4.1 Stimulus Generation

Unless otherwise stated, stimuli consisted of static images of solvent-excluded
surfaces rendered as a white surface on a black background. Surfaces were
shaded using ambient occlusion plus a 10% constant ambient term. Shadows
were generated by reducing surface luminance using ambient occlusion computed
using the methods described in [Landis, 2002] by attenuating the luminance
component of the surface assuming a white light and a gamma of 2.2 [Stokes
et al., 1996a].

Surfaces were derived from four di�erent proteins from the Protein Data Bank
[Berman et al., 2000] (PDB IDs: 1BBH (bacterial), 1B7V (bacterial, Fig. 6.1,
6.4, 6.9, and 6.3), 1DB4 (human, Fig. 6.2), 3CLN (mammalian, Fig. 6.11) and
generated via MSMS [Sanner et al., 1996] with each surface visualized entirely
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within the image. Since the experiments were conducted in the browser, all images
were prerendered with sRGB embedded color profiles.

A single colored patch was mapped to a unique position on each surface for
each shadow level. Patches were of roughly equivalent size on each surface—some
variation was caused by the curvature of the surfaces—and never directly bordered
the black background. For each experiment, patches were generated for three
levels of shadow: light (25% ± 2% shadow), medium (50% ± 2% shadow), and
dark (75% ± 2% shadow), with all shadow levels measured after the 10% ambient
lighting was applied. Patches were placed in shaded regions where no part of the
region was lighter than the assigned shading level and at least 94% of the region
was within the assigned shading level.

Each participant saw colors from two seven-step color ramps. To control the
number of stimuli viewed by each participant, we selected three colors from each
ramp as test colors to be displayed in shadow. Tested colors were selected such
that each color was at least one just noticeable di�erence (JND) apart even in
the darkest shadow condition. Throughout this work, we use the JND measure
defined using crowdsourced metrics in [Albers Szafir et al., 2014] to help account
for anticipated display variability.

Except for in the stereo pilot (§6.7.2), each participant saw 32 stimuli total:
six stimuli at each of the three shadow levels (one for each combination of ramp
and test color) and 14 stimuli with patches placed in an unshadowed position
(one for each level of each ramp) for validation and to prevent biased responses
from the reduced set of colors in the shadow conditions. Images were selected
randomly from each of the four surface models and the stimuli were presented
in a random order to minimize adaptation to a given color or shadow level. The
use of validation stimuli with “obvious” correct answers (in this case, the exact
pixel match to the surface patch) is commonly used to gauge honest responses in
crowdsourced studies, where participants sometimes “click-through” the questions
using random answers to complete the study as quickly as possible [Buhrmester
et al., 2011]. Participants responding two or more ramp units away from the
correct answer on multiple validation stimuli were excluded from our analyses.

6.4.2 Participant Selection

Participants were selected from two separate pools: in-person (20 participants
total) and crowdsourced using Amazon’s Mechanical Turk (322 participants total).
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Mechanical Turk is known to be a generally reliable participant pool for graphical
perception studies [Buhrmester et al., 2011, Heer and Bostock, 2010] and also
allows us to measure performance for viewers under a spectrum of real-world
viewing conditions. This approach may introduce variability in viewing condi-
tions and devices, which prevents us from making precise claims about visual
perception. We found comparable e�ects across both crowdsourced and in-person
studies. We hypothesize that this variability may be beneficial for measuring
factors significantly influencing performance under realistic conditions, but leave
this verification to future work. To ensure the quality of our results, we followed
known best practices for ensuring honest responses [Kittur et al., 2008], only
recruited participants with at least a 95% overall “approval” rating, and used
explicit validation questions. We also tracked both worker identification number
and IP address across all experiments to ensure that each participant completed
only one experiment.

We recruited 16 in-person participants (10 female, 6 male) between the ages
of 21 and 31 (µ = 25.75, � = 2.47) to address S1 and S2 under controlled
conditions. We then recreated these experiments using crowdsourced participants
on Amazon’s Mechanical Turk. We found consistent results between in-person and
crowdsourced participants, confirming that crowdsourcing is a su�ciently reliable
method for recruiting participants for our color matching task. We addressed
S1 through S6 using a cummulative total of 322 crowdsourced participants (174
male, 147 female, 1 declined to report) between the ages of 18 and 65 (µ = 31.25,
� = 9.66).

Certain visualization conditions are not amenable to crowdsourcing, such as
stereo viewing (S5), which requires specialized displays. For our stereo experiment,
we also required participants to have prior stereo experience due to the nuances
of proper stereo viewing. We recruited 4 participants with prior experience with
stereo displays for pilot study S5. We present preliminary findings from this
study, but consider it a pilot as we were only able to recruit a limited number
of participants, all with some familiarity with our task, due to our qualification
restrictions.

We analyzed our data for each experiment except S1 at the level of shadow
⇥ color ramp ⇥ primary independent variables using ANCOVAs (Analyses of
Covariance) with question order as a covariate to account for interparticipant
variation from repeated measures across conditions. In all cases, results from each
participant pool were analyzed independently, and an equal number of participants
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was considered for each condition within each experiment. If exclusions caused an
imbalance between conditions within an experiment, participants were excluded
at random until both conditions were balanced. Across all studies, only data
from participants who reported normal or corrected-to-normal vision and no color
vision deficiencies was considered. We observed no significant performance e�ects
due to age.

6.5 Lightness Constancy for Surfaces

6.5.1 Do we see constancy e�ects for ambient occlusion
surfaces? (S1)

Before exploring color matching performance as a function of design, my first
experiment aims to verify that participants can match image colors to a key when
image colors are darkened by ambient occlusion shadows. If these visualizations
support lightness constancy, I would anticipate that viewers would match image
colors closer to the original, unshadowed color than to the darkened pixel color in
the image.

Methods

The procedure and stimuli for this experiment are outlined in §6.4. I carefully
engineered two luminance-varying ramps such that, for each tested color, both
the correct key color and the pixel value of the shadowed image color could be
mapped to within one crowdsourced JND of a ramp color. These ramps allowed us
to verify that the participants were able to employ lightness constancy in order to
disambiguate between the pixel value of the shaded patch and its corresponding
ramp value. Ramp luminance was varied in the CIELAB color space from L

⇤ = 9
to L

⇤ = 87, with each step separated by 13 units and L

⇤ = 35, L⇤ = 61, and L

⇤ = 87
used as test colors (Fig. 6.4). I centered the ramps around blue and red such
that all colors remained within the monitor gamut and consecutive colors were
su�ciently di�erent. Each participant saw 16 stimuli from each ramp, resulting
in 32 total responses per participant.

Participants were drawn from two pools: 8 in-person participants to measure
constancy e�ects under controlled conditions and 17 crowdsourced participants
from Mechanical Turk to measure e�ects under the diverse array of conditions ex-
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Figure 6.5: Mean di�erence between the correct patch color and participant
responses in S1. Both in-lab and crowdsourced participants mapped shadowed
colors significantly closer overall to the original key color than to the shadowed
pixel value. All error bars encode standard error.

perienced in visualization applications. Two of the crowdsourced participants were
excluded from the analysis for poor performance on validation stimuli, resulting
in 15 participants total for analysis. Participants completed the in-person study
using an Asus G51J Series Laptop with an NVidia GeForce GTX 260M graphics
card in full screen using Google Chrome. Room lights were dimmed to control
ambient illumination.

Results

Performance was measured as the di�erence between the correct key color and the
color reported by participants. I use this metric rather than absolute correctness
because constancy is an approximate phenomena—even in real scenes, constancy
mechanisms cannot always exactly compute the correct color [Gilchrist and Annan,
2002]—“right” or “wrong” measures do not adequately capture lightness constancy
performance. Figure 6.5 summarizes our results.

A repeated measures Multivariate Analysis of Variance (MANOVA) on each set of
participants revealed evidence of significant constancy e�ects. There was a signif-
icant di�erence between colors reported by participants and the actual shadowed
surface colors (F

in-person

(1, 45) = 19.7818, p
in-person

< .0001; F
Turk

(1, 93) = 29.9981,
p

Turk

< .0001). Participants mapped shadowed patches to significantly lighter
colors than the surface pixel color. This result was consistent across all shadow
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levels (F
in-person

(2, 45) = 130.4005, p

in-person

< .0001; F

Turk

(2, 93) = 141.2638,
p

Turk

< .0001). I did not find a significant di�erence between response errors
at the three tested shadow levels in the in-person experiment (F(2, 45) = 1.3754,
p = .2566) and between the light and medium shadows in the crowdsourced exper-
iment (F(1, 45) = 1.4694, p = .2264). This lack of di�erence also indicates constancy
e�ects—participants mapped these patches to roughly equivalent colors despite
significant changes in shadow darkening. Overall, the performance of the crowd-
sourced participants is consistent with in-person participants, crowdsourced
participants performed slightly worse on the darkest shadow conditions.

These results collectively suggest that participants are able to account for
the e�ect of shadows on surface colors. Participants matched surface colors to
colors significantly lighter than the pixel value of the shadowed color and darker
shadows did not always influence the apparent color (Fig. 6.5). The consistency
of these results across both in-person and crowdsourced conditions point to
the robustness of this phenomena across viewing conditions and suggests its
importance for visualization design. However, the results also suggest there may be
room for improvement: there was still significant error in matching surface colors
to the original colors, and this error might be improved by di�erent visualization
techniques.

6.5.2 Do viewers use structural information to interpret
surface colors? (S2)

Results from S1 demonstrate that participants are correctly identifying shadowed
image colors as lighter than than the corresponding pixel color. However, these
results do not confirm the cues the visual system uses to interpret these colors.
It is possible that the darkness of the shadow surrounding a patch rather than
structural information allows participants to interpret image colors. Simultaneous
color contrast between a stimulus and the surrounding shadows accounts for
some aspects of lightness constancy in the real world [Grossberg and Hong, 2006,
Rutherford and Brainard, 2002], although it is insu�cient to explain all constancy
e�ects in three-dimensional surfaces [Allred and Brainard, 2009]. The visual
system may normalize contrast for local windows around a patch at comparable
depth plane [Adelson, 1999, Kingdom, 2011]. For visualizations, contrast between
the patch color and the surrounding shadows may cause the local color patch
to appear lighter than its actual pixel value—the dark shadow makes the patch
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Figure 6.6: Viewers identified colors more accurately on surfaces than on dimmed
two dimensional planes (S2), suggesting that surface structure plays a role in
idenitfying shadowed colors.

appear lighter by contrast. In this experiment, I wanted to verify that contrast does
not account for all of the e�ects reported in Section 6.5.1. If contrast su�ciently
explains the S1 results, how we visualize a surface will not significantly influence
perceptions of shadowed colors.

To test if the observed constancy e�ects were due to simultaneous contrast, I
compared color matching on visualized surfaces to two-dimensional “shadowed”
patches. If the e�ects from the surface color matching task (§6.5.1) are due to
contrast, I would expect no significant di�erence between color perception for 2D
shadows and 3D surfaces. This would imply that performance depends on the
darkness of the surrounding shadow rather than visualization design.

Methods

2D stimuli consisted of 100 pixel-wide colored square patches centered in a 500
pixel-wide white square. Patch size was comparable to the 3D surface patches.
Both the patch and background square were dimmed to the tested shadow level
to mimic the local lighting on the molecular surface—the white background was
dimmed to the grey of the surface shadow to indicate the lighting shift, and the
colored square was dimmed to the color of the shadowed patch (see Fig. 6.4,
bottom). Participants were instructed that both patch and background were in
shadow and that they were to identify the original, unshadowed color of the center
patch. In order to simplify task instructions, 2D stimuli were not placed on a black
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Figure 6.7: No significant improvements were seen between dimmed planes and
surfaces darkened using non-gamma corrected image-processing methods. This
suggests that constancy mechanisms leverage shadow information when process-
ing surface colors (S3) and small changes to those shadows can damage their
e�ects.

background. As colored patches were generally placed far from the background in
the 3D condition, we do not anticipate any confounds from this decision: contrast
e�ects in constancy are speculated to operate over local windows within a visual
scene [Adelson, 1999].

Colors, shadow levels, general procedure, and stimulus distribution mirrored
the 3D condition described in the previous section, including 14 unshadowed
2D validation stimuli (§6.5.1). Data was again collected from two participant
pools: 8 in-person participants and 18 crowdsourced participants. Three crowd-
sourced participants were excluded for poor performance on the validation stimuli,
resulting in 15 participants for analysis. Both sets of participants were run simul-
taneously with those discussed in §6.5.1, with dimension treated as a between
participants factor.

Results

I ran a three-way ANCOVA (dimension, color ramp, and shadow level) on the
di�erence between the original color and response color for the 2D data and
the 3D data from S1 for each participant pool. Participants matched colors on
surfaces significantly more accurately than on equally darkened 2D patches (Fig.
6.6, F

in-person

(2, 262) = 13.3018, p
in-person

= .0003; F
Turk

(1, 532) = 23.9261, p
Turk

<
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.0001). This accuracy varied significantly across shadow level (F
in-person

(1, 262) =
19.5687, p

in-person

< .0001; F
Turk

(2, 532) = 74.6342, p
Turk

< .0001), but not across
color ramp (F

lab

(1, 262) = .2160, p
lab

= .2160; F
Turk

(1, 532) = 0.1031, p
Turk

= .7483).
These results suggest that the e�ects measured in S1 (§6.5.1) are not entirely

explained by simultaneous contrast: surface structure accounts for a significant
proportion of the reported color matching performance.

6.5.3 Do correct shadows support constancy e�ects? (S3)

Correct ambient occlusion shadows apply shading by attenuating the amount of
light emitted by the display. An approximate implementation might instead apply
the darkening as an image post-process. The di�erence is subtle: because the
image processing may occur in device-dependent RGB, the shadows would be
di�erently a�ected by gamma correction (Fig. 6.8). While the magnitudes of these
changes are small, they distort the gradients of the resulting shadows, which may
contain important information for constancy [Gilchrist and Jacobsen, 1984].

While modern visualization systems generally apply shadows correctly, the
e�ects of subtle di�erences in shadow application provide evidence of the con-
nection between perception theory and visualization practice. Distorting these
gradients may reduce performance on our color matching task. Given the subtle
visual di�erence between the two conditions, a performance di�erence would
imply that perceptions of shadows and surface structure influence the apparent
color of surface data.

Methods

I replicated the previous experiments (§6.5.1 and §6.5.2) using stimuli that applied
ambient occlusion attenuation to each channel of device-dependent RGB color.
The luminance of all corresponding linearly and nonlinearly dimmed colors were
within one L

⇤ JND measured under crowdsourced conditions [Albers Szafir et al.,
2014]. Dimension (2D versus 3D) was treated as a between-participants factor.
The procedure otherwise mirrored those described in §6.4.

The study was run simultaneously with the crowdsourced studies discussed in
Sections 6.5.1 and 6.5.2. I collected data from 34 participants on Mechanical Turk.
Three participants were excluded from the 2D condition and one from 3D surfaces
condition for performance on validation stimuli, resulting in 15 participants per
condition for analysis.
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(a) Hydrophobicity data with correct
shadows

(b) Hydrophobicity data with incorrect
shadows

(c) Color di�erences (computed as Eu-
clidean di�erence in CIELAB) encoded
as greyscale

Figure 6.8: Di�erences in CIELAB�E between correct and approximate shadows
for the surface visualized in Figure 6.1b. Color di�erence is encoded using linear
greyscale, with black representing areas of no di�erence. While shadow lightness
was within one crowdsourced JND for all tested shadow levels, the incorrect
shadow method changed the lightness and color gradients of shadowed colors.
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Figure 6.9: Molecular visualizations using standard ambient occlusion demon-
strated the best color identification performance. The lack of a significant dif-
ference between 2D dimmed patches and 3D surfaces using image-processing
darkening suggests that the visual system actively uses shadow information to
extract shadowed surface colors.

Results

To address S3, I compared participant responses across all four crowdsourced
conditions (dimmed 2D patches from Section 6.5.2, 3D surfaces from Section
6.5.1, image-processing darkened 2D patches, and image-processing darkened
3D surfaces). A four-way ANCOVA (dimension, shadow level, darkening type, and
color ramp) was used to analyze participant responses. Participants identified
colors significantly more accurately on 3D surfaces than 2D planes (F(1, 1061) =
18.4228, p < .0001). Shadow level significantly influenced performance (F(2, 1061) =
160.0194, p < .0001), but I found no significant e�ect of color ramp ((F(1, 1061) =
1.2035, p = .2729)), and only a marginal main e�ect for darkening type (F(1, 1061) =
3.8011, p = .0515). I also found a significant interaction e�ect of dimension
and shading (F(2, 1061) = 5.5637, p = .0185, Fig. 6.7). A Tukey’s Test of Honest
Significant Di�erence (HSD) found no significant di�erence between performance
in both 2D conditions and the image-processing darkened surfaces, but revealed
that standard shadowed surfaces outperformed all other conditions (at ↵ = .05).
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These results suggest that precise shadow information facilitates data interpre-
tation along a surface. While I found no performance di�erences for uniform, 2D
planes, incorrect shading significantly decreases color matching performance on
molecular surfaces despite the subtlety of the visual di�erences between the dis-
played images (Fig. 6.9). Incorrect shadows may communicate surface structure,
but may not be enough to support constancy mechanisms in interpreting encoded
data—I found no evidence that incorrect shadows provide any performance gains
beyond what 2D shadows provide. These findings also suggest that visualization
design decisions that manipulate surface shading may influence viewers’ abilities
to correctly interpret surface data in visualization.

6.6 Do constancy e�ects preserve luminance cues
in common ramps? (S4)

In practice, well-designed color ramps integrate luminance variation with other
color cues. Luminance is a strong cue for identifying colors in visualization;
however, shadows compress luminance variation in surface visualization. Light-
ness constancy e�ects must su�ciently preserve luminance variations in shaded
regions for luminance-varying ramps to retain their performance benefits over
isoluminant ramps. While §6.5 provides empirical evidence that some of these
cues can be preserved, it does so using carefully engineered ramps that strictly
use luminance cues in order to gauge subtle e�ects. In this experiment, I com-
pared three commonly used ramps that integrate luminance variation with their
isoluminant equivalents to determine if luminance cues are beneficial for color
ramps used to encode surface data.

6.6.1 Methods

Stimuli were constructed as discussed in §6.4, with any colors outside sRGB
gamut [Stokes et al., 1996a] clamped via chroma reduction. Color ramps consisted
of a purple-white-green (PWG) and a red-yellow-blue (RYB) diverging ramp from
ColorBrewer [Brewer et al., 2003b] and a rainbow ramp (Ra) akin to that used
in PyMol [DeLano, 2002]. As opposed to the red and blue luminance varying
ramps from the previous experiments, these ramps represent common practice
color choices for surface visualization—the ColorBrewer ramps represent good
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Figure 6.10: Luminance-varying ramps supported significantly better performance
than their isoluminant equivalents, suggesting that lightness constancy helps
viewers interpret data encoded with well-designed color ramps (S4).

practice for data encoding, while the rainbow ramp provides an example of extreme
hue variation that is used in practice but su�ers from several known limitations
[Borkin et al., 2011, Borland and Taylor, 2007].

The isoluminant variations of these ramps were computed by setting the CIELAB
L

⇤ values of the ramps to L

⇤ = 65, near the average luminance of all ramp colors.
While the distance between colors is reduced in the isoluminant ramps, this
reduction is only in lightness. As a result, I can gauge if lightness constancy
e�ects are su�cient to preserve the luminance cues in the original ramps. To
control for this compression, I verified that consecutive color steps in all ramps
di�ered by at least three times our benchmark JND. A pilot identified three sample
values from each ramp as potentially misidentified colors to be used as test colors:
dark purple, light purple, and mid-green for PWG; orange, red, and mid-blue for
RYB; and orange, cyan, and purple for Ra.

The experimental procedure was identical to that described in §6.4, with
luminance treated as a between-participants factor. Each participant saw colors
from one isoluminant ramp and a di�erent luminance-varying ramp (PWG with
isoluminant RYB, Ra with isoluminant PWG, and RYB with isoluminant Ra). Data
was collected from 92 participants on Mechanical Turk. One participant was
excluded from each of the PWG/isoluminant RYB and the RYB/isoluminant Ra
condition for performance on the unshadowed validation stimuli, resulting in 30
participants per condition for analysis.
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6.6.2 Results

As the di�erence between consecutive colors varied between ramps, I used the
number of ramp units between the original and response color as our primary
measure and absolute correctness as a secondary measure (Fig. 6.10). Since a
direct mapping exists between the isoluminant and luminance varying ramps, this
primary measure uniformly quantifies performance di�erences between ramps
despite the fact that this di�erence is not necessarily uniform in color space.

I analyzed the primary measure using a three-way ANCOVA (luminance vari-
ance, shadow, and ramp). Overall, luminance-varying ramps significantly outper-
formed isoluminant ramps (F(1, 1664) = 23.5519, p < .0001). Performance varied
significantly across shadow level (F(2, 1664) = 53.8479, p < .0001), and color ramp
(F(2, 1664) = 47.0705, p < .0001). Both PWG and Ra ramps significantly outper-
formed their isoluminant equivalents (F

PWG

(1, 1664) = 17.3171, p
PWG

< .0001 and
F

Rainbow

(1, 1664) = 9.1601, p
Rainbow

= .0025). While RYB outperformed isoluminant
RYB on average, the di�erence was not significant (F(1, 1664) = 1.4980, p = .2211).

These results suggest that performance gains from luminance variation in well-
designed ramps are preserved for ambient occlusion surfaces. This performance
gain implies that lightness constancy matters in practice for surface visualization—
luminance is a strong color cue; if designs better support lightness constancy,
they will improve visualization e�ectiveness in practice.

6.7 A�ects of Depth and Shape Cues
The results of the previous experiments indicate that lightness constancy may
enhance the apparent color of surface data on molecular surfaces rendered with
ambient occlusion. My first three studies (S1–S3, §6.5) suggest that the spatial
cues created on a surface by ambient occlusion shading support participants in
accurately matching surface colors to a key. Ambient occlusion provides both
shape and depth cues. Both may enhance perceptions of surface structure, but,
according to previous work, these factors may influence performance on our color
matching task in di�erent ways [Gilchrist and Annan, 2002].

Molecular surface visualizations often supplement ambient occlusion with
other rendering techniques that provide additional structural cues. Adding depth
cues to ambient occlusion surfaces can improve depth perceptions [Mather and
Smith, 2004], but is unclear if these added cues will significantly increase color
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Figure 6.11: We compared di�erent additions to ambient occlusion from the
molecular visualization literature to explore how design influences viewers’ abilities
to interpret shadowed colors: di�use local lighting (both sourced at the camera and
in the upper left) and stereo viewing to enhance depth, and suggestive contours to
enhance shape.

identification performance [Gilchrist and Jacobsen, 1984]. Strict shape cues
can damage the abilities of viewers to infer shape from shading for a surface
rendering [Kennedy and Bai, 2000], which results from S3 suggest may, in turn,
reduce performance. In this section, I compare three techniques commonly used in
conjunction with ambient occlusion to enhance depth and shape cues in molecular
visualization: directional lighting [Pettersen et al., 2004], stereo viewing [DeLano,
2002], and suggestive contours [Tarini et al., 2006] (Fig.6.11) to test how depth
and shape cueing a�ect participants’ abilities to interpret surface colors.
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6.7.1 How do added depth cues from directional lighting
a�ect constancy? (S5)

Local directional lighting is commonly used to supplement ambient occlusion
in molecular surface visualization. This provides both an estimatable lighting
direction and increased depth cueing, both of which may enhance constancy e�ects
over ambient occlusion alone Hedrich et al. [2009], Ruppertsberg et al. [2008].
I anticipate that adding local directional lighting may improve color matching
performance for surface visualization. This improvement might be dependent
on the position of the light source, which influences how significantly the added
lighting improves depth perceptions [Langer and Bultho�, 2001]. I explored the
relationship between local directional lighting and constancy e�ects using light
sourced at two positions: from the upper left where it is strongly correlated with
depth perceptions or from the camera where it provides substantially less depth
cueing.

Methods

Stimulus images were generated as described in §6.4.1, with colors drawn from
the seven-step red luminance-varying ramp (§6.5.1) and purple-white-green di-
verging ramp (§6.6). I generated two stimuli collections, each consisting of one set
of visualizations using ambient occlusion alone and a corresponding set using
ambient occlusion plus a directional light. The directional light was positioned
at the camera in the first collection and to the upper left of the molecule in the
second. Surface patches were slightly displaced from the previous experiments
and between each collection to account for variation in shadow introduced by the
directional shading, but patch placement was identical within each collection.

Supplementing ambient occlusion with directional lighting could cause surfaces
to be significantly lighter than with ambient occlusion alone. This would potentially
confound the experiment: superior performance of directional lighting may be
caused by lighter shadows rather than structural cues introduced by directional
lighting. To avoid this confound, I implemented directional light as di�use shading
and computed surface shading using the equation A = 0.5 ⇥ ao+ 0.5 ⇥ ao⇥ (l̂ · n̂),
where ao is the ambient occlusion value, l̂ is the unit vector from the center of the
molecule towards the light source and n̂ is the unit normal. This model bounds
the surface shading such that the directional plus ambient occlusion surface
shading is never lighter than the raw ambient occlusion values.
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Figure 6.12: Adding directional lighting to ambient occlusion significantly improved
viewers’ ability to identify colors in shadow; however, this improvement appears
to be correlated with the amount of depth cueing (S5) provided by the lighting
direction.

The experimental procedure was otherwise identical to that described in §6.4.
Each participant saw 32 stimuli from exactly one lighting condition. Data was
collected from 108 participants on Mechanical Turk. Two participants were ex-
cluded from the upper left lighting condition and three from each condition in
the camera-sourced lighting collection for performance on the validation stimuli,
resulting in 25 participants per condition.

Results

I ran a three-way ANCOVA (shading model, shadow, and ramp) on the di�erences
between the original color and participant responses for each stimulus collec-
tion (Fig. 6.12). I found significant main e�ects of shadow (F

upperleft

(1, 801) =

76.1552, p

upperleft

< .0001; F

camera

(1, 676) = 59.7345, p

camera

< .0001) and ramp
(F

upperleft

(1, 801) = 10.4646, p
upperleft

= .0013; F
camera

(1, 676) = 10.4646, p = .0013).
Surface visualizations with directional lighting supported significantly better color
judgments than ambient occlusion surfaces alone when the light was positioned
to the upper left of the molecule (F

upperleft

(1, 801) = 7.1918, p

upperleft

= .0075).
Adding camera-sourced directional lighting also improved perceptions on average,
but the di�erence was not significant (F(1, 676) = 1.4369, p = .2311).

These results indicate that enhanced depth cues may be more important to
interpreting color-coded data along a surface than lighting direction: lighting
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sourced to the upper left of a surface provides both better depth cueing [Langer
and Bultho�, 2001] and greater color matching performance than lighting sourced
at the camera. Artificially bounding shading in the directional lighting conditions
makes shadows generally darker than in the baseline ambient occlusion condition.
Therefore, I anticipate that e�ects seen in this experiment will likely increase in
practice without this bound.

6.7.2 How do added depth cues from stereo viewing a�ect
constancy? (S5)

The previous experiment provides evidence that enhancing depth cues may in-
crease how accurately participants interpret color-coded information on a surface.
Stereo viewing also increases depth cueing and is supported by many commercial
molecular visualization packages DeLano [2002]. Experiments in psychology have
found that the binocular stereo cues may improve constancy e�ects [Buckley et al.,
1994, Yang and Shevell, 2002]; however, these studies are based on simple stimuli
and do not use commercial stereo devices. I anticipate that stereo depth cues
might improve participants’ abilities to correctly identify color on surfaces, but it
is unclear if other tradeo�s made by stereo viewing, such as reduced color fidelity,
will outweigh these e�ects.

Methods: I tested stereo viewing using a within-subjects pilot study on a passive
stereo display (Zalmon Trimon ZM-M220W). Two stimulus sets were generated: one
consisting of row interlaced stereo visualizations and another with the correspond-
ing monocular images. All stimuli assumed a uniform interpupillary distance.
Participants were initially screened for stereo blindness and then shown a sample
stereo molecule as asked to adjust their position until the object appeared as a
continuous, three dimensional shape. The procedure was otherwise identical to
that described in §6.5.1. Participants wore polarized stereo glasses through the
entirety of the study in both the stereo and monocular conditions.

I compared stereo and monocular viewing in an in-person pilot across four
participants. Because stereo viewing relies on proper display technologies and
is highly sensitive to a number of parameters, I required participants to have
prior experience with stereo viewing. This constraint limited the number of
participants we were able to recruit. To help account for the limited number of
participants in this study, I doubled the number of shadowed stimuli seen by each
participant (each participant saw each shadow condition twice per tested color)
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Figure 6.13: Surface color perceptions improved when molecular surfaces were
supplemented with binocular depth cues (S5).

and treated stereo and monocular viewing as within-participants factors. Stereo
and monocular viewing were blocked, with participants waiting at least 24 hours
between each block to mitigate learning e�ects. While the size of this pilot limits
the statistical power of our results, I did find significant results that I believe o�er
initial insight into the influence of stereo vision on constancy e�ects.

Results

I ran a three-way repeated measures ANCOVA (stereo, shadow, and ramp) on the
di�erences between the original color and response color to compare stereo and
monocular viewing, with block order included as a random covariate. I found
significant main e�ects of shadow (F(2, 278) = 14.4426, p < .0001), viewing type
(F(1, 278) = 8.0351, p = .0050), and ramp (F(1, 278) = 4.8838, p = .00279), but no
significant interaction between block order and viewing condition (F(1, 278) =

0.9097, p = .3412). Surfaces viewed in stereo supported more accurate color
identification than in the monocular condition (Fig. 7.7a). These findings support
the observations about S5 in §6.7.1: the binocular depth cues provided by stereo
viewing may improve overall color identification in surface visualization. Further
study is needed to verify the magnitude of this e�ect.
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6.7.3 How do added shape cues a�ect constancy? (S6)

Sections 6.7.1 and 6.7.2 together indicate a correlation between depth cues and
performance on our color matching task. However, techniques like directional
lighting also improve perceptions of surface shape. Li and Pizlo [2011] shading and
other depth cues are of secondary importance for comprehending shape compared
to cues from edges and contours. The two sets of cues may be processed di�erently
by the visual system. To reason about how shape perceptions might influence
performance, I also measured performance for ambient occlusion surfaces with
suggestive contours. Suggestive contours [DeCarlo et al., 2003] are used to in
surface visualization to enhance representations of surface shape. Contours use
lines instead of shading to emphasize high-level depth discontinuities along the
surface, creating an image resembling a hand-drawn sketch. In previous studies
[Kennedy and Bai, 2000], adding contours to a shaded surface inhibited shadow
perceptions. Given the importance of shadow perception for constancy e�ects,
as suggested by S3 (§6.5.3), contours may consequentally inhibit participants’
abilities to accurately map surface colors to their corresponding original color.

Methods

Two sets of stimuli were again generated: one consisting of visualizations using
ambient occlusion and a corresponding set using ambient occlusion plus sugges-
tive contours. Contours were generated using the implementation provided by
DeCarlo et al. in the TriMesh package [DeCarlo et al., 2003] and layered on top of
the original ambient occlusion surface. The procedure was otherwise identical to
the previous experiments (§6.4).

Data was collected from 55 participants from Mechanical Turk. One participant
was excluded for poor performance on the validation questions, resulting in 27
participants per condition.

Results

I ran a three-way ANCOVA (contours, shadow, and ramp) on the di�erence be-
tween the key and response colors. I found a significant main e�ect of shadow
F(1, 278) = 57.0108, p < .0001). Adding contours marginally decreased perfor-
mance over ambient occlusion alone (F(1, 278) = 2.7329, p = .0986, Fig. 6.14). The
marginal decrease in performance points to a potential trade-o� between shape
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Figure 6.14: Enhancing shape using contours resulted in marginally decreased
performance over ambient occlusion alone (S6).

and color identification performance for non-photorealistic rendering techniques
in surface visualization. Combined with previous results [Kennedy and Bai, 2000],
this provides further evidence of that accurate shadow perceptions improve the
interpretation of color-coded data.

6.8 Discussion and Design Implications
In surface visualization, viewers explore data in the context of surface structure.
Surface structure is commonly conveyed through shadows and shading, which
may obscure information encoded on the surface. Supporting lightness constancy
in visualization can improve how well a visualization supports accurately reading
encoded data in shadow. The results, summarized in Table 6.1, demonstrate that
despite several approximations made in surface visualizations rendered using
ambient occlusion, viewers are able to interpret color-coded data along these
surfaces. Performance for this task is directly influenced by visualization design.
S1 through S3 isolate constancy e�ects and suggest that the visual system is
leveraging information about synthetic shadows to disentangle encoded data from
surface features, and S4 suggests that these e�ects are su�cient to preserve
performance gains from luminance variation for common color mappings. S5 and
S6 inform how visualization design can influence color identification performance.

Visualization techniques generally represent trade-o�s: they often improve
performance for certain types of task at the expense of others. Surface visu-
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alizations have traditionally been concerned with supporting depth percepts to
convey structure and color percepts to convey additional data about that structure.
These findings suggest that improving percepts of depth and of color may go hand-
in-hand: techniques that enhance the apparent depth of a visualized surface
may also improve how e�ectively the visualization communicates encoded data.
Designers can leverage this correlation to develop visualizations that e�ectively
convey surface data in context. Supplementing ambient occlusion with other visu-
alization techniques that enhance depth perceptions, such as directional lighting
or stereo viewing, may improve how e�ectively viewers can interpret information
encoded using color on a surface.

This coordination between depth and color may be part of a delicate balance.
The visual system appears to be sensitive to the methods used to communicate
surface structure. S3 and S6 collectively suggest that some design choices can
hinder perceptions of surface colors. The visual system likely processes shadows
generated by ambient occlusion as more than simply surface shading. Small
variations that damage the physical basis of these shadows can significantly
diminish viewers’ abilities to correctly interpret color encodings. Further, that
contours marginally degraded constancy e�ects suggests that simply enhancing
the perception of surface shape is not enough to improve this ability. Such design
decisions may represent a tradeo� between perceptions of encoded data and of
surface structure and could be used to inform task-driven design.

I anticipate that these findings will generalize to other types of surfaces beyond
solvent-excluded molecular surfaces. While molecular surfaces represent a realis-
tic use case where correctly inferring data in shadowed regions is often important,
these surfaces are unfamiliar complex visual structures to our non-expert par-
ticipants. The tested surfaces in the context of these studies therefore simply
represent smooth, amorphous structures. As constancy e�ects are influenced
by object familiarity [Olkkonen et al., 2008b], I would anticipate that for naïve
observers, these results provide a baseline measure for color identification perfor-
mance in ambient occlusion surface visualization more generally. Although these
structures do not represent all possible surface structures (they are continuous
and have no sharp corners), I believe that these results generalize to surfaces
beyond solvent-excluded molecular surfaces but recognize that verifying this is
important future work.
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Study
S1
S2
S3
S4
S5

S6

Viewers can read shadowed colors on ambient occlusion surfaces
Structure helps viewers interpret shadowed colors
Precise shadow information supports accurate color interpretation
Luminance cues improve performance for common ramps
Visualization techniques that improve depth perception enable 
viewers to more accurately identify shadowed colors
Visualization techniques that improve shape perception may not 
improve performance

Conclusion

Table 6.1: Summary of Results

6.9 Limitations and Future Work
This work represents initial steps in understanding how visualization design can
support viewers in accurately interpreting color encodings for e�ective surface
visualization. I focus on measuring performance across to a small set of common
design decisions for molecular surface visualization. Exploring other aspects
of design could provide a deeper understanding of how to better support color
encodings and other percepts in surface visualization, such as exploring e�ects of
interaction, ramp design, or other shadow approximations like depth darkening.
Comparison to more rigorous global illumination models could help illuminate
how the approximations made by ambient occlusion influence surface perception.
Generalizing these explorations across additional surfaces (e.g. space-filling
models) or to surfaces in other domains (e.g. aerodynamics) would create a more
general understanding of how we can consider perceptual phenomena to inform
e�ective surface visualization design.

The task used in these studies was somewhat artificial by necessity. While
identifying color values on a surface is a standard visualization task, each image in
our experiments had only one colored patch. This removes potential complications
due to contrast between patches or judgments from comparing multiple surface
patches, both of which are possible in standard scenarios but would interfere
with our ability to measure color identification performance as a function of
visualization design. Future explorations might consider more complex tasks.
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6.10 Conclusion
In this chapter, I show how visualizations can be designed to support better per-
formance on point tasks using color for a specific use case: surface visualizations.
Color is commonly used to visualize data on surfaces. However, visualization
techniques that communicate surface shape often do so using surface shading.
This shading can confound data encoded using color, as colors are darkened by
shadows. Lightness constancy provides a perceptual mechanism for bridging this
complication, allowing viewers to interpret shadowed colors in the real world. Its
e�ectiveness in complex synthetic environments such as surface visualizations is
not well understood. I confirmed the existence of lightness constancy for molecular
surfaces rendered using ambient occlusion and present an initial exploration of
how visualization design can impact the e�ectiveness of color encodings on these
surfaces. These studies o�er initial insight into how a consideration of constancy
mechanisms can help guide e�ective visualization design.

This study only looks at how visualization design can support color for one
use case: surface visualization. Surface visualization is an interesting and useful
case—biologists frequently explore data on the molecular surface to explore data
across complex surface features—but is very niche. I hypothesize there are many
other ways that visualizations could be designed to support color encodings.
For example, certain background colors might work well with di�erent color
ramps due to lightness contrast e�ects. The models presented in Chapter 8 focus
on guiding ramps as a function of size, but could equally be used to select an
e�ective minimum mark size for a desired encoding. Exploring other ways that
visualizations can be designed to support point tasks with color is important
future work.
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The previous chapter demonstrates how visualization design can improve how
e�ectively color communicates data. In most scenarios, adapting the design of a
visualization to improve how accurately viewers interpret color is not feasible—color
is generally just one of the features used to encode data values. Instead, I argue
that e�ective color encodings can be designed to account for the anticipated design
of a visualization. That is, designers can choose colors based on the expected
parameters of visualization viewing. This can be done by understanding how
discriminability—the ability to tell colors apart—changes in practice [Stone, 2012].

In this chapter, I introduce a method for creating data-driven metrics of color
di�erence perception. This method allows designers to model color di�erence
for target viewing populations and adapt existing metrics to better account for
the expected perceptions of target viewers. Understanding perceptions for target
populations is important as variations in viewing conditions can substantially
degrade viewers’ abilities to distinguish between colors [Oicherman et al., 2008,
Rizzo et al., 2002]. I apply this method to model color di�erence perception for
crowdsourced workers. The resulting model can be used to design e�ective color
encodings for the web.

7.1 Overview
Color di�erence models are often used in design applications to predict how
noticeably two colors will di�er. These models serve several purposes, such as
determining sets of colors that are subtly di�erent or in creating an encoding that
interpolated perceptual di�erences between two colors (Fig. 7.1); however, they
model perception under laboratory conditions, with correctly calibrated displays
and constrained viewing environments. Given the rapid proliferation of visual
content on the web and the increasing mobility of digital devices, visual media
is becoming increasingly diverse, making factors that influence color di�erence
perception, such as lighting conditions and display properties, highly variable in
everyday viewing. Existing color di�erence models, while powerful descriptors of
human vision, do not consider this variability, limiting their utility in design.

CIELAB is commonly used in design scenarios as it o�ers a color di�erence
formulation based on Euclidean distance (�E⇤

ab

). In visualization, it is commonly
used in systems [Cao et al., 2010], design techniques [Wang et al., 2008], and



138

About Tableau maps: www.tableausoftff ware.com/mapdata

Sheet 1

Profit:

www.tableausoftware.com/mapdata

Figure 7.1: Visualizations often use color sets with large numbers of subtly
distinct colors for encoding quantitative data. For example, this map encodes
profit margins for di�erent states using 13 color steps, but color di�erences are
chosen based on expert intuitions rather than through validated metrics1. Metrics
better tuned to visualization viewing can provide empirical guidance for designing
such encodings.

evaluations [Livingston et al., 2011]. This metric is not as accurate as other
appearance models, such as CIECAM02 [Moroney et al., 2002], but its simplicity
makes it practical for design. In this chapter, I present an approach to adapt
CIELAB to model color di�erence perception for real-world viewing populations
that preserves its simplicity. As the range of viewing factors in these populations
is too complex to model each independently, I instead capture these factors in
aggregate by sampling di�erence perception across target viewers and use these
samples to derive scaling factors for CIELAB.

The resulting model parameterizes CIELAB with respect to a given population
and desired level of noticeable di�erence. Providing a parametric model tuned
empirically to the target population exchanges the ability to make exacting claims
about perceptual mechanism to instead create an engineering model that cap-
tures color di�erence in practice. This engineering model has several desirable
properties for visualization designers. It is parametric as it can be tuned to reflect
a desired range of viewers and conditions. It is data-driven as it derives these
parameters from observations under the target viewing conditions, yet practical
as this data can be collected quickly using a simple task and requires only small
modifications to common design metrics. Additionally, the model explicitly con-
siders the probabilistic nature of the data, providing designers simple controls for
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defining how “noticeable” their desired color di�erence will be. In this chapter,
I use this approach to model and validate discriminability on the web, using
crowdsourced participants from Mechanical Turk. The resulting model provides
an empirical metric for just-noticeable color di�erence for web content that aligns
with common designer intuitions. To validate this approach, the crowdsourced
model is compared to existing theoretical and laboratory benchmarks for color
di�erence.

7.2 Background
CIELAB was designed such that one unit of Euclidean distance equals one just-
noticeable color di�erence (JND). However, prior work suggests that this may be
an overly optimistic estimate. Several experiments have quantified just-noticeable
color di�erences for CIELAB, such as the empirical benchmark from Mahy et
al. we use in this study (�E⇤

ab

= 2.3) [Mahy et al., 1994b]. These studies also
demonstrate that CIELAB is not fully perceptually uniform even under ideal con-
ditions [Fairchild, 2005]. Revised models of color di�erence have been developed
for CIELAB, such as �E

⇤
94 and CIEDE2000 [Luo et al., 2001], that account for

these nonuniformities using hue and chroma (see [Robertson, 2007] for a survey).
However, these models tend be more mathematically complicated and less intuitive
than the Euclidean �E

⇤
ab

metric, improving accuracy at the expense of simplicity.
Because of this trade-o�, designers commonly use �E

⇤
ab

in practice [Fairchild,
2005].

Existing CIELAB distance metrics quantify di�erence under laboratory con-
ditions: lighting, display parameters (e.g. gamma and peak outputs), viewer
position, and surround are all controlled. However, these factors substantially
impact color di�erence perception [Oicherman et al., 2008, Sarkar et al., 2010,
Stokes et al., 1992]. Some e�orts have attempted to account for variation caused
by individual viewing factors, such as ambient illumination [Devlin et al., 2006]
or display media [Fairchild and Berns, 1993, Stone, 2001], but do not consider
interactions between factors. More general models exist for specific contexts like
airplane cockpits [Silverstein and Merrifield, 1982] or medical applications [Pizer
and Chan, 1980], but it is unclear how well these models generalize beyond their
target applications. My goal is to provide a color di�erence model that can be
readily tuned to di�erent environments and o�ers designers control over discrim-
inability within those environments. I do this using a data-driven model sampled
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under the target conditions (e.g. mobile devices or clinical settings). With this
approach, designers do not need to consider each factor independently, but rather
can account for expected variation factors in a more manageable way.

7.3 A Parametric Color Di�erence Model
My color modeling methodology builds on the CIELAB color di�erence model.
CIELAB provides an e�ective approximation of color perception to create a space
that is relatively perceptually uniform, yet su�ciently practical to use. The color
space was designed such that the following assumptions hold [Fairchild, 2005]:

A1: The axes are perceptually orthogonal, so they may be treated independently.

A2: Euclidean distance (�E⇤
ab

) is an e�ective metric for perceived color di�erence.

A3: The axes are perceptually uniform: di�erences at the higher end of the scale
and lower end of the scale are the same.

A4: The axes are scaled such that one unit along any axis corresponds to one
just-noticeable di�erence.

Prior work shows that these assumptions do not always hold; however, addressing
these points of failure vastly complicates measuring color di�erences. As a result,
they are still frequently assumed in design as they exchange a small amount
of perceptual accuracy for a degree of practicality desirable for many design
applications. This trade-o� is often worthwhile for all but A4. Color di�erence
metrics are intended to tell when colors are discernable. Two colors separated by
�E = 1 will almost always appear the same (only 7% of participants in this study
could detect a di�erence). In visualization, A4 is sometimes addressed using non-
empirical intuitions, but these intuitions are based on experience and what “looks
correct” to a well-trained eye on a single display. They do not necessarily generalize
well and are not grounded in user perceptions. More frequently, CIELAB is used
as intended (a JND mapped to �E = 1) irrespective of this known imperfection.

The model presented in this chapter aims to empirically adapt CIELAB such
that A4 holds for the designer’s desired definition of “just noticable.” Accepting
the first three assumptions allows the model to do so using a simple extension to
the CIELAB model. I model discriminability along each axis independently on the
basis of A1, which has the added benefit of empirically correcting any imbalance
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(a) Color Matching Stimulus (b) Forced Choice Stimulus

Figure 7.2: Free-response color matching tasks provide insight into discriminabil-
ity, but are of limited utility for probabilistic modeling. We use a forced choice
microtask to measure discriminability as a function of color di�erence.

between lightness and chroma. A1 and A3 collectively allow the model to use
a single scaling factor for each axis, denoted as ND

L

(p), ND

a

(p), and ND

b

(p),
such that a di�erence of one unit along the scaled axis is noticeable for p% of
the target viewing population. I derive these scaling factors using simple tasks to
quickly measure discriminability across color di�erences for the target population
and model this discriminability linearly. These scaling factors normalize each
color axis of CIELAB according to the designer’s desired discriminability threshold
using only one multiplication for each axis.

The resulting adapted color model meets the goals discussed in the introduction
to this chapter: it is parametric, as the scaling factors can adapt to the viewing
conditions; it is data-driven, as these parameters can be determined empirically
from observations of the color di�erence; it is practical, as data collection can be
done quickly and easily and model computations require only three multiplications
beyond the standard CIELAB computation; and it is probabilistic, as designers
can dynamically define their desired noticeable di�erences and adjust the model
accordingly. I confirm this approach by modeling color di�erence perception for the
web. The subsequent sections discuss three studies that construct and validate
this example model. The first describes a color matching pilot that provides insight
into the above modeling assumptions. The second illustrates the data collection
and model construction methods. The third validates this model on 161 web
viewers.
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7.4 Insight from a Color Matching Task
Color di�erence is commonly measured using a free-response color matching task,
where participants manually adjust a stimulus color to match a given reference
color [Crawford, 1965, Sarkar et al., 2010]. The adjusted response colors provide
a distribution of colors that appear to match the stimulus color. This procedure,
akin to Maxwell’s color matching experiments [Fairchild, 2005], has been used to
measure JND for cross-media applications and provides substantial insight into
color di�erence across color space.

I conducted a crowdsourced color matching experiment on Mechanical Turk to
verify the modeling assumptions discussed in the previous section. Participants
saw a 2� colored reference square centered on a 500 pixel-wide white background
with a slider that adjusted the color of a second stimulus square (Fig. 7.2a). To
help conceptualize these measures, 2� of visual angle is roughly the width of a
thumb held at an arms length or approximately 42 pixels wide for a participant
sitting 24 inches from the display. Participants were instructed to drag the slider
until the adjusted color matched the reference color as closely as possible. Tested
colors were sampled from the Swedish Natural Color System primaries [Hård and
Sivik, 2007] and varied at equal intervals along each axis of CIELAB within the
gamut defined by � = 2.2 and a D65 whitepoint [Stokes et al., 1996b], resulting
in 24 distinct colors per axis. Our modeling procedure uses a constant gamma
and whitepoint as, in practice, designers cannot feasibly adjust content to such
display-dependent conditions. By holding these factors constant and measuring
di�erence perception across multiple displays, I can parameterize color di�erence
for design using only information immediately available to designers. To simplify
the color matching task for Turk workers who may be unfamiliar with CIELAB,
participants were shown only one slider, corresponding to one axis of CIELAB
(L⇤, a⇤, or b

⇤), as in [Alfvin and Fairchild, 1997, Sarkar et al., 2010]. The slider
displayed the full color range within the gamut along the tested axis through the
reference color. Axis was a between-participants factor.

I recruited 48 participants (16 per axis, 33 female, 15 male) from age 18 to
61 (µ = 34.32,� = 13.22) with normal or corrected-to-normal vision and no color
vision deficiencies. Participants were screened for color-vision deficiencies using
five digital renderings of Ishihara plates [Legrand et al., 1945] and asked self-report
their approximate distance from the monitor, which was used in conjunction with
DPI to compute the size of the 2� stimulus square. They completed a simplified
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Figure 7.3: Mean error for the color matching task. Web viewing discriminability
thresholds exceed existing benchmarks and may vary between axes.

tutorial to test task understanding and then asked to complete the color match-
ing task for each of the 24 reference colors described above in a random order.
Participants were given unlimited time for each response.

I analyzed the di�erence between response and reference colors (error) using
a two-way ANCOVA (reference color and tested axis) with display distance and
question order as covariates to account for interparticipant variation. The results
confirm that color di�erence perception is reduced on the web: per-axis mean
errors (µ

L

= 3.21,µ
a

= 3.03,µ
b

= 4.33, Fig. 7.3) were significantly larger than
both the theoretical JND (�E⇤

ab

= 1.0) and our empirical benchmark (�E⇤
ab

= 2.3),
suggesting that existing metrics underestimate color di�erence for the web. Error
varied significantly between axes (F(2, 997) = 11.2693, p < .0001), but not within axes
(F

L

(1, 871) = 1.6072, p
L

= .2052; F
a

(1, 862) = 1.8942, p
a

= .1691; F
b

(1, 755) = 0.1875,
p

b

= .6651). These findings support A3, but suggest that each axis should be
modeled independently.

However, these results do not provide probabilistic insight into color
discriminability—the adjusted colors identify a window of indiscriminable colors
around a given reference, but do not capture how likely it is that these colors
will appear distinct from the reference for di�erent viewers. Without controlled
insight into the likelihood that colors will appear di�erent, designers cannot tune
the model to their desired application settings. In the next section, I propose a
task model which addresses this limitation in order to quantify the likelihood
distribution of color di�erences for a target population and allows quick and
e�cient data collection.
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7.5 Constructing the Engineering Model
While the slider task provides insight into color di�erence perception, it su�ers
from a number of limitations. One limitation unique to crowdsourcing is that the
sliders essentially provide continuous responses. Participants seek to complete
a large number of tasks as quickly as possible to maximize their overall reward.
For continuous response tasks, participants can optimize their time by provid-
ing answers that are “close enough” rather than taking the time to respond as
accurately as possible.

E�ective crowdsourced studies use a microtask model, providing simple tasks
that require roughly as much time to answer accurately as to answer “close
enough” [Buhrmester et al., 2011]. I designed a data collection microtask to
measure how frequently colors appear to be di�erent at specific color di�erences
(discriminability rate) and use this measure to parameterize my color di�erence
model. The task is a binary forced choice comparison of two colored squares based
on the method of constant stimuli [Boring, 1917] (Fig. 7.2b). The squares di�ered
in color by a controlled amount along one axis. Participants were asked whether
the squares appeared to be the same color or di�erent colors. Discriminability
is then quantified as a probabilistic function of color di�erence for our sample
population by measuring how frequently the squares appeared to be di�erent
colors at di�erent levels of color di�erence. This method can be used to obtain a
large amount of discriminability data e�ciently: median response time for was
5.8 seconds per color pair.

7.5.1 Sampling Method

I can use the above microtask model to estimate per-axis scaling parameters
(ND

L

(p), ND

a

(p), and ND

b

(p)) representing the color di�erences along each axis
perceived by p% of the target population. I computed these parameters for the web
viewing model through a crowdsourced experiment involving 75 participants (37
female, 38 male) age 19 to 56 (µ = 31.05,� = 9.75) with normal or corrected-to-
normal vision and no color vision deficiencies. Participants were asked to directly
compare two 2� squares placed at opposite ends of a 8� white plane (Fig. 7.2b).
One square was colored using a reference color randomly selected from a set of
316 colors from L

⇤ = 10 to L

⇤ = 90 evenly sampled from the CIELAB color space
and within the color gamut defined by a standard PC gamma and whitepoint
(� = 2.2 and D65 whitepoint)[Stokes et al., 1996b]. The color of the second square
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di�ered from the reference color by a controlled amount along exactly one color
axis (between 2.5 and 8.5 �E

⇤
ab

sampled at 0.5 �E

⇤
ab

increments).
Forced choice tasks are vulnerable to gamed responses: participants could pro-

vide random answers to complete the study quickly. To help mitigate such gaming
and also to unbias the stimulus set, I included 20 stimuli with identically colored
squares and two with obviously di�erent colors. Three participants answered less
than 65% of the same-color questions or one extreme di�erence correctly and
were excluded from our analyses.

Participants were first screened for color vision deficiencies using digital ren-
derings of Ishihara plates [Legrand et al., 1945] and self-reported their distance
from the display. They then completed three tutorial questions to ensure their
understanding of our definition of “same” and “di�erent” colors—two colors that
varied in hue, two that varied in luminance, and two identical colors—and could
not proceed until each was answered correctly. Participants were then shown
a sequence of 61 stimuli (39 modeling stimuli and 22 validation stimuli) in a
random order, with each reference color appearing twice and each color axis ⇥
color di�erence once. A two-second grey screen separated subsequent stimuli to
minimize adaptation e�ects. Participants had unlimited time to respond.

I analyzed discriminability rates using a three-way ANCOVA (reference color,
tested axis, and magnitude of di�erence) with display distance and question
order as covariates to account for interparticipant variation. The magnitude
of color di�erence significantly a�ected discriminability (F

L

(1, 2846) = 169.0197,
p

L

< .0001; F
a

(1, 2846) = 163.0631, p
a

< .0001; F
b

(1, 2846) = 148.5278, p
b

< .0001).
Discriminability also varied significantly between tested axes (F(2, 2846) = 3.1380,
p = .0244). Reference color L

⇤ significantly influenced discriminability (F(1, 2846) =
17.3941, p < .0001), but the e�ect was small—the lightest colors were 0.3% more
discriminable than the darkest. We found no significant e�ects of reference a

⇤ or
b

⇤.

7.5.2 Parameterizing CIELAB

To derive the parameters of our engineering model, I create linear models of this
sampled discriminability data. These models express the sampled discriminability
rates as a linear function of color di�erence for each axis of CIELAB on the basis of
A1 and A3 (Fig. 7.4). While identical colors should always have a discriminability
rate of zero, sampling error can introduce noise that skews these linear models.
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Figure 7.4: An illustration of our modeling approach. A linear model (red) is
fitted to the rate of ’di�erent’ responses across measured di�erences and forced
through zero to account for sampling. Only color di�erences where discriminability
changes with distance are modeled (dark blue).

To correct for such discrepancies, I construct the models with intercepts forced
through zero and further account for sampling errors by treating interparticipant
variability as a random factor. Likewise, these models are only fit to data below the
upper bound of discriminability (e.g where tested di�erences are not immediately
perceivable; dark blue in Fig. 7.4a), a point referred to as the knee [Carter and
Silverstein, 2010].

The resulting models have the form p = V

x

d where x is the color axis, p is
the desired discriminability rate, V

x

is the slope of the model, and d is the color
di�erence in �E

⇤
ab

.I derive the parameters ND

x

(p) of the engineering model using
the function

ND

x

(p) = p/V

x

(7.1)

Assuming A3 holds, a designer can divide color di�erence along each axis by
ND

x

(p) to renormalize CIELAB such that p% of people modeled under our target
conditions will detect color di�erences at �E

p

= 1. Control over this probability
helps designers decide the granularity with which colors are sampled. For example,
a model at p = 50% allows designers to create encodings with gradual yet detectable
changes in color value. Alternatively, larger p values privilidge discriminability by
ensuring color di�erences are more readily detected. This reduces the continuity
between encoded values and also the number of possible color steps in an encoding.
p can also help control for outliers in viewing conditions by considering a larger
or smaller proportion of all responses. For example, p = 50% will be near the



147

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2.
5 3

3.
5 4

4.
5 5

5.
5 6

6.
5 7

7.
5 8

8.
5 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

ΔL*

1.1

0
0.1
0.2
0.3
0.4

0.6
0.7

0.9
1

1.1

0
0.1
0.2
0.3
0.4

0.6
0.7

0.9
1

1.1

Pe
rc

en
ta

ge
 R

ec
og

ni
ze

d
 D

iff
er

en
ce

25 Participants 50 Participants 75 Participants

NDL*(50%)

NDL*(80%)

pL*=0.124 x dL* pL*=0.128 x dL*
pL*=0.126 x dL*

Figure 7.5: Models can be generated using a relatively few samples. As the number
of samples increases, the confidence in model increases, but the parameters
estimated by the model remain roughly constant.

anticipated median performance of the target population, whereas p = 100% will
be more robust to worst-case performance.

Given two colors (L⇤
1, a⇤

1, b⇤
1) and (L⇤

2, a⇤
2, b⇤

2), �E⇤
ab

can be adapted to the viewing
population as:

�E

p

=

s

(
L

⇤
1 - L

⇤
2

ND

L

(p)
)2 + (

a

⇤
1 - a

⇤
2

ND

a

(p)
)2 + (

b

⇤
1 - b

⇤
2

ND

b

(p)
)2 (7.2)

For the crowdsourced data, a traditional p = 50% JND maps to ND

L

(50) =

4.06�E⇤
ab

,ND

a

(50) = 5.26�E⇤
ab

or ND

b

(50) = 5.88 �E

⇤
ab

on the web (Fig. 7.4),
which roughly aligns with designer intuitions often employed by a coauthor on this
work who has extensive experience in encoding design. These color di�erences
are notably larger than the CIE standard (1.0) and laboratory benchmark (2.3).
Also unlike these benchmarks, these parameters vary for each axis.

I constructed models for 25, 50, and 75 participants (Fig. 7.5). These mod-
els yielded nearly identical parameter values, although the larger sample sizes
provided greater statistical confidence in the parameters. This points to the prac-
ticality and reproducibility of our model: data from relatively few participants
su�ciently characterize the model, and this characterization remained consistent
across groups.
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Original

65% 75% 90% 97.5%

L*

a*

b*

Figure 7.6: I use the error distributions from the color matching experiment to
generate per-axis color di�erences for validating our model. The sample steps,
visualized here per axis, match the reported color di�erence at nine sampled
percentiles (x-axis) in Section 7.4.

7.6 Validating the Adapted Model
I wanted to confirm that the engineering model derived in the previous section
generalizes from the smaller tuning population to the larger target population and
that it makes e�ective predictions when the color changes are not axis aligned.
This model predicts that if two colors are �E

p

= 1.0 di�erent, then the viewing
population will perceive them as di�erent p% of the time. Colors with smaller
�E

p

will be perceived as di�erent less frequently, and larger �E

p

will be seen
as di�erent more frequently. I validated these predictions empirically using a
second, larger group from the target population and a broader range of colors
and color di�erences, including cross-axis di�erences. I collected data from 182
crowdsourced participants (106 female, 76 male) ages 18 to 64 (µ = 30.60,� = 9.78)
with normal vision and no known CVD to evaluate the model. 21 participants
were excluded for poor performance on the validation questions.

The validation procedure modified the parameter sampling task to include
a broader range of colors and color di�erences. Reference colors were sampled
uniformly from CIELAB, but more densely than in the parameter sampling task.
Color di�erences were drawn from the error distributions of the color matching
experiment to create nine color di�erence levels per axis (Fig. 7.6). For each
stimuli, one di�erence level was applied to each axis of the reference color to
emphasize variation across multiple axes. Di�erence level combinations were
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Figure 7.7: Plotting the percentage of perceived matches against �E

p

tuned to (a)
p = 50% and (b) p = 80% di�erentiability for the crowdsourced model shows that
the model e�ectively predicts noticeable di�erence.

drawn randomly for each participant and counterbalanced between participants.
The procedure otherwise matched the parameter sampling task.

The findings validated model predictions (Fig. 7.7). Tuning the model to p = 50%
discriminability predicts that participants can distinguish colors with a di�erence
of �E50 = 1 ± 0.125 as di�erent roughly 50% of the time. The validation data
confirmed this prediction: colors at this di�erence were di�erentiable in 49.81%
of trials. These predictions are considerably better than the CIELAB specification
(�E

ab

= 1.0) or my laboratory benchmark Mahy et al. [1994b] (�E
ab

= 2.3), which
were perceived as di�erent for 7% and 13% of samples respectively. Further, colors
less than �E50 = 1 apart were consistently less discriminable, and more distant
colors were perceived as more discriminable.

Model predictions were robust across discriminability levels. For example,
tuning the model to 80% discriminability yields the parameters ND

L

(80%) = 6.5,
ND

a

(80%) = 8.42, and ND

b

(80%) = 9.41). Applying this to our validation data,
our population identified colors at �E80 = 1.0 to be di�erent in 80.62% of trials,
confirming the model predictions. Across models at all discriminability levels,
predictions were accurate to within 7% on average, and within 3.5% for models
with p > 50%.



150

7.7 Readily Recognizable Color Di�erences
At a certain point, color di�erences become readily perceptible like, for example,
the di�erence between red and blue. Large-scale color di�erences are not well-
modeled by CIELAB [Mahy et al., 1994b], but understanding the threshold where
colors readily appear di�erent is useful for applications in visualization. For
example, a designer may want to select a set of categorical colors for hierarchical
data such that related datapoints are readily discriminable, but close enough in
color to be associated (e.g. one branch maps to di�erent greens, while a second
maps to di�erent blues [Tennekes and de Jonge, 2014]).

In the proposed model, the minimum threshold at which two colors are guar-
anteed to be discriminable is equivalent to the parameter for p = 100%. Prior
work [Carter and Silverstein, 2010] has referred to this value as the “knee”—the
point at which the asymptote (100% visibility) intersects with the linear model
of color perception for smaller di�erences. However, the knee may be fuzzily
defined in practice based on variations in display and limitations with CIELAB for
measuring large color di�erences. This fuzziness may o�set the knee value from
that predicted by the linear model. In this experiment, I measure how perceptions
change as color di�erence approaches the knee value.

To pinpoint the knee for web-based visualizations, I repeated the proposed data
collection procedure using larger color di�erences. Color di�erences were sampled
from 0 to 4 JNDs (p = 50%) at 0.5 JND steps. This sampling ensures the p = 100%
JND level fell roughly in the center of the samples. 27 source colors were tested,
with color generated using the same procedure as in Section 7.5. The stimulus
and procedure otherwise matched those in Section 7.4, with each participant
seeing 106 total color pairs. I collected data 97 participants (49 female, 47 male;
mean age 31, � age 8.96). One was excluded for poor performance on the equal
color stimuli.

The results are summarized in Figure 7.8. Given expected variation in reported
responses, I consider color to be readily discriminable once increasing color
di�erence no longer significantly increase the measured discriminability rate
(e.g. larger color di�erences provide roughly the same responses). These results
present an interesting pattern: for all of the reported data, the knee predicted by
the crowdsourcing model (�L⇤ = 8.13, �a

⇤ = 10.53, �b

⇤ = 11.76) falls short of
that predicted by these results. Measuring the knee according to the above metric,
these results suggest that a color di�erence is likely to be perceived with 100%
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Figure 7.8: Discriminability rates for the large color di�erences. The knee predicted
by the linear model (smallest color di�erence guaranteed to be discriminable,
purple triangles) falls just short of where increased color di�erences no longer
significantly increase discriminability (red bars), suggesting that perceived color
di�erence may gradually level o�.

certainty between 2 and 2.5 50% JNDs (or �L

⇤ = 10.2, �a⇤ = 13.2, �b⇤ = 14.7).
One possible explanation for this is due to sampling. Sampling introduces

uncertainty in to the measures. Since this knee data is sampled over a di�erent
population that the previous metrics, expected variation might lead to di�erent
models. Each of these models would each generate a slightly di�erent knee value.
However, the shape of this data suggests that as color di�erence becomes readily
apparent, discriminability behaves almost asymptotically. It steadily levels o�,
curving as color di�erences near 100% discriminability. This curving would extend
the knee value to better align with these results and would also fit the shape of
the data (Fig. 7.8).

From a perceptual standpoint, asymptotic behavior near the knee makes sense—
CIELAB is notoriously poor with large color di�erences [Mahy et al., 1994a]. As
colors become readily discriminable, some degredation in the CIELAB model might
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result in a curving structure as perceptual linearity falls o�. Verifying the precise
structure of the knee is important future work.

7.8 Discussion: Limitations and Applications
The core feature of this modeling approach is that it is empirical: designers can
tune the model parameters by sampling the target viewing population. A myriad of
factors can influence color di�erence perception, ranging from displays to viewing
environments to the viewers themselves. Rather than trying to analyze each
potential factor, I instead capture their e�ects in aggregate empirically. This
allows models to readily adapt to specific settings. For example, a designer
can model senior citizens using tablets in dimly lit cafes or students viewing
projectors in classrooms by simply sampling these populations to construct specific
model instances. The fact that the model captures anisotropy in color di�erence
perception helps the models provide good predictive performance and is also
beneficial for visualization applications that leverage multiple aspects of color to
encode information, such as luminance and hue.

The data-driven nature of this model is both a strength and limitation. Sam-
pling quickly captures the specific conditions of a population; however, it o�ers
no insight into how well an adapted model transfers between target populations.
The e�ciency of the microtask modeling approach helps alleviate this concern:
large amounts of data can be collected quickly from a lay population. An addi-
tional limitation of this sampling method is that it does not characterize specific
local viewing factors, such as gamma, ambient lighting, peak color output, and
whitepoint. While this is a significant limitation from a colorimetry standpoint,
it is a strength from a design standpoint as designers using color di�erence for
cross-media applications do not necessarily have access to these variables when
creating visual content; assuming constant parameters mirrors what designers
do in practice.

Aspects of stimulus presentation, such as stimulus size and background color,
may e�ect the results. The next chapter explores these issues, and, in practice,
I still expect this model to achieve reliable results that significantly improve the
discriminability of color encodings constructed using this metric. Also, I have
only assessed a small number of applications to date. However, the fact that
this approach works well on the challenging case of the web and also constructs
plausible models for other factors, as explored in the next chapter, suggests that
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it will be e�ective in other scenarios. I hope to explore new scenarios, such as
mobile devices, in future work.

While the focus of this discussion is on visualization, color di�erence models
are useful in a wide range of design applications including marketing, graphic
design, digital art, image compression Eckert and Bradley [1998], segmentation
Bhoyar and Kadke [2010], and watermarking Podilchuk and Zeng [1998]. As
displays become increasingly mobile, designers must consider a broader range of
conditions and devices when designing for such applications. Metrics for color
di�erence in design need to consider how to generalize laboratory models to fit
these real-world design requirements. The parametric color di�erence model
presented here attempts to capture real-world perceptions for specific populations
using a relatively small amount of data. This model also helps normalize color
di�erence between color axes in practice, for example, to balance lightness and
chroma for color map construction in visualization.

7.9 Conclusion
In this chapter, I present an engineering model of color di�erence for applications
in design. This model attempts to account for variation in viewing condition
by reparameterizing CIELAB using data sampled directly from a target viewing
population. This approach allows us to account for the broad variety of factors
encountered in modern design scenarios by creating a model that is parametric,
data-driven, probabilistic, and practical.
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The size of the marks that encode data also influences how di�erent encoding
colors appear. Most color metrics are defined for targets that are 2� (roughly
thumbwidth at arms length or 42 pixels 24 inches away) or 10� (roughly the size
of a fist at arms length or 203 pixels 24 inches away) of visual angle wide [Berns,
2000]. However, visualization designers have targets of many sizes to consider. A
significant body of work has shown that viewers’ abilities to distinguish between
colors varies with size [Carter and Silverstein, 2012, Fairchild, 2013]. In this
chapter, I show how designers can take advantage of anticipated bounds on the
size of marks in a visualization to create discriminible color encodings.

When creating a visualization, a designer often sets an explicit range on the
size of a mark, such as the minimum and maximum size of a scatterplot point
or the width of a bar in a bar chart. If designers understand how perceived color
di�erences change for marks of di�erent sizes, they can use bounds on mark
size to design color encodings that are guaranteed (with some probability) to be
discriminable. However, there are as of yet no practical models to help designers
control for e�ects of mark size on encodings. In this chapter, I use the techniques
introduced in the previous chapter to model color discriminability as a function
of mark size. I then show how designing for lower bounds on size can guarantee
discriminability using bar charts with bars of a fixed width and variable height. I
conclude by discussing how designers can use these metrics in practice to create
color encodings that are robust to size variation for a given visualization design.

8.1 A Model of Color Di�erence Perception for
Mark Size

Visualization uses a variety of visual features to represent data, including size.
The ability to distinguish between encoded colors for marks of di�erent sizes is
important for point tasks in data visualization [Stone, 2012]. However, this ability
degrades as marks grow smaller. In Figure 8.1, the bar colors, which indicate
categories of products, are easy to distinguish. However, for smaller marks such
as those in the scatterplots, the same colors become less visibly distinct. Colors
in well-designed palettes may be distinguishable at large scales, but break down
as marks get smaller. For example, in Figure 8.2, it is di�cult to distinguish the
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Figure 8.1: Colors that are comfortably distinct on bars are more di�cult to
distinguish on the small scatterplot marks.

Figure 8.2: Colors that follow good design practice for large marks may not remain
e�ective for small marks. For example, it is di�cult to distinguish the pink and
orange marks from this ColorBrewer ramp in a scatterplot with small marks (left).
Handcrafted solutions have been used in previous systems (right) but require
substantial expertise to design correctly.1

first and third and second and fourth Brewer colors when mapped to scatterplots.
Some systems, such as Tableau 2, use colors carefully crafted to be robust

across sizes. Designing these encodings requires a great deal of expertise and a
large degree of testing to determine their robustness. Further, color encodings
that are robust to mark size may not be visually appealing for all mark sizes. While

2
http://www.tableausoftware.com/

http://www.tableausoftware.com/
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Figure 8.3: Colors that are robust for small marks may not be visually appealing
for larger marks. For example, the colors in a scatterplot may be too saturate
for an area graph (left). Designers can use heuristics to manually adjust col-
ors for di�erent kinds of marks; however, this process can lead to undesirable
inconsistencies between di�erent visualizations in a display (right).

systems like Tableau provide heuristics to handle these limitations in practice,
these heuristics often introduce undesirable inconsistencies when using multiple
visualizations simultaneously (Fig. 8.3). Instead, my goal in this chapter is to
provide quantitative metrics for designers that allow them to create encodings
that are probabilistically discriminable for di�erent mark sizes. I will do this by
modeling how discriminability changes as marks decrease in size.

In this section, I construct a quantitative model of how color discriminability
changes as a function of size. This model emphasizes discriminability for small
perceptual di�erences, such as just-noticeable di�erences (JNDs). I built this
model using the method presented in the previous chapter to measure percep-
tions for real users in real viewing conditions. This helps create a model that is
probabilistically robust to viewing variation. While the resulting model cannot
necessarily model the visual system’s specific sensitivities to color, it provides
practical guidance for visualization design.

In this section, the “size” of a mark refers to its width. In practice, the size
of marks can vary along multiple dimensions, such as width, height, or arc
length. I aim to model color di�erence as a function of size in a way that can
be applied generally. Rather than focus on a specific axis of size variance, I
model discriminability for marks of uniform height and width. The experiments
discussed here show that discriminability is better characterized as a function
of width rather than the related measure of area. As a result, the model can be
applied to visualization designs by considering the smallest dimension of a mark
(e.g. length or width). Constraining color perceptions to the smallest dimension
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ensures that colors will appear at least as distinct as predicted—increasing size
along any dimension should increase the apparent di�erence between colors.

The model is derived from target sizes ranging from 6 degrees (approximately
120 pixels wide) to 1

3 degree of visual angle (approximately 7 pixels wide). The re-
sulting color di�erence function, ND(p, s), provides a weighted Euclidean distance
in CIELAB space, parameterized by two factors: a threshold p, defined as the
percentage of observers who see two colors separated by that value as di�erent,
and a target size s, specified in degrees of visual angle. For example, a theoretical
CIELAB JND is parameterized as p = 50% and s = 2� in this formulation.

Under this model, discriminability decreases as the target size shrinks and
the di�erence in discriminability along each of the three axis changes unevenly.
The decrease is dramatic. While these results also find that a traditional 2 degree
JND on the web is near �E = 6, for 0.33 degrees, the same discriminability is at a
distance of roughly �E = 11, with an even stronger variation in weightings along
the three axes.

8.1.1 Procedure

To rescale CIELAB as a function of size, I used the same data collection proceedures
as in Section 7.5: participants were asked to report whether two colors a fixed
distance apart appeared the same or di�erent. I calculated scaling factors for the
L

⇤, a⇤ and b

⇤ axes using the frequencies of these responses across di�erent sizes
and color di�erences.

8.1.2 Design

The models was again constructed using Mechanical Turk to measure color dis-
criminability for web viewing. Participants were shown a series of pairs of colored
squares and asked to identify whether the pairs were of the same color or di�erent
colors by pressing one of two keys (“f" key if the colors appear the same, and the
“j" key if the colors appear di�erent).

As in the previous model, for each pair of colors, one square was a standard
sample, and the second di�ered by a small step along one of the three CIELAB
axes. The position of the di�ering square was randomized for each stimulus. A
set of 52 sample colors were selected by sampling uniformly along the L

⇤, a⇤, and
b

⇤ axes and removing colors falling outside the gamut for the largest di�erence
step (Fig. 8.4).
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Figure 8.4: The 52 sample as distributed in CIELAB space.

To generate the di�ered colors, I defined a di�erence step for each size and
sampled ±5 steps per axis. This creates 33 color di�erences per size, including
3 where the color di�erence was zero. I included zero di�erence cases both for
completeness and to aid in validation. Each participant saw all 33 color di�erences
a total of 3 times, but with di�erent colors mapped to each color di�erence step.
I distributed the source colors across participants such that we had an equal
number of samples for each color ⇥ color di�erence.

Because discriminability is reduced as marks grow smaller, the tested steps
were scaled for each size to avoid floor or ceiling e�ects as sizes changed. For sizes
less than 2 degrees, the color di�erence steps were generated by normalizing Carter
and Silverstein’s model Carter and Silverstein [2010]—which models changes in
color di�erence as a function of response time—such that a color di�erence step
for the 2-degree square equaled 1�E. While the Carter and Silverstein models
were based on a di�erent performance metric, they provide a baseline for ensuring
that tested color di�erences were sampled appropriately as the size of the mark
decreased. Step sizes were linearly interpolated for sizes not sampled by Carter
and Silverstein. For sizes 2 degrees and larger, a uniform step of 1.25�E was used.

I collected data using a total of four experiments, each evaluating three size
sets: 0.33, 0.67, and 1 degree; 0.5, 1.25, and 2 degree; 2, 4, and 6 degrees, and
0.4, 0.8, and 1.625 degrees. I replicated the 2 degree value because our initial
color di�erence step for 2 degrees of 1�E was found to be too small to collect useful
data. The results from the larger step were used in the model. In all cases, the
stimuli were presented a fixed distance apart (4 degrees) measured edge to edge,
assuming a standard viewing distance of 24 inches.
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For each experiment, participants first were prompted for their demographic
information. Then they were then given a brief tutorial explaining the task at hand.
Each participant saw 104 trials (99 experimental observations and 5 validation
trials with a very di�erent colors:, > 20�E di�erence). There was a 500ms white
screen between trials to alleviate adaptation e�ects.

8.1.3 Statistical Analysis

Overall, I modeled responses from 624 participants (245 female, 339 male, 40
declined to state) between 16 and 66 years of age (µ = 33.71, � = 11.60) with
self-reported normal or corrected-to-normal vision. Each participant saw each of
the 52 stimulus colors twice, and each combination of color di�erence (di�erence
amount ⇥ direction ⇥ axis) once for all three sizes. Color ⇥ size ⇥ color di�erence
was counterbalanced between participants. This sampling density will predict
discriminability rates for each tested color di�erence to at worst ±7.5% with 90%
confidence.

To verify the validity of these results, I ran a 9-level ANCOVA on the responses
across all four experiments in the study. Gender was treated as a covariate and
interparticipant was modeled as a random factor. Mark size was treated as a
between-subjects factor. I found significant e�ects of age (F(1, 607) = 8.1342,
p = .0045) and question order (F(1, 50826) = 16.7810, p < .0001); however, I
found no systematic variation for either factor. I also saw significant e�ects of the
fixed color’s L

⇤ (F(1, 50791) = 1448.323, p < .0001) and b

⇤ (F(1, 50764) = 29.9342,
p < .0001) values, but not on the fixed color’s a

⇤ value (F(1, 50764) = 0.1621,
p.6873); however, only L

⇤ appeared to have a systematic influence on responses—
discriminability was slightly better for light colors than for dark. The primary
factors—size (F(10, 6741) = 58.2625,p < .0001) and color di�erence along L

⇤

(F(1, 50756) = 8301.816, p < .0001), a⇤ (F(1, 50756) = 7819.245, p < .0001), and
b

⇤ (F(1, 50756) = 4974.221, p < .0001)—all had a highly significant e�ect on
response.

8.1.4 Predicting Discriminability Thresholds

The collected data was used to create a parameterized noticeable di�erence (ND)
as a linear function of distance in CIELAB space for each tested size, using the
same procedure as discussed in Section 7.5.1. For every tested color di�erence, a
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Figure 8.5: Discriminability changes linearly with color di�erence (colored lines
show this fit for four tested sizes), but the slope of the linear fit decreases with
size. The shaded box marks 50% discriminability. The point at which each line
exceeds this bound is the ND(50) for each of L⇤, a⇤ and b

⇤ axis. The ND(50) for
the 4-degree stimulus is indicated by a vertical black line. All models fit with
p < 0.0001 except for �b for size 0.33 (p = 0.000189).
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Size (s)
Axis 0.333 0.4 0.5 0.667 0.8 1 1.25 1.625 2 4 6
L

⇤ 0.068 0.069 0.078 0.081 0.090 0.083 0.089 0.085 0.100 0.096 0.090
a

⇤ 0.051 0.054 0.062 0.067 0.064 0.073 0.073 0.072 0.085 0.091 0.097
b

⇤ 0.034 0.042 0.050 0.051 0.055 0.061 0.064 0.066 0.073 0.086 0.086

Table 8.1: V(s) for each size and axis

Size (s)
Axis 0.333 0.4 0.5 0.667 0.8 1 1.25 1.625 2 4 6
L

⇤ 7.321 7.267 6.435 6.180 5.531 6.017 5.643 5.903 5.010 5.187 5.574
a

⇤ 9.901 9.268 8.052 7.429 7.837 6.897 6.821 6.906 5.917 5.488 5.149
b

⇤ 14.837 12.019 10.101 9.747 9.091 8.197 7.764 7.587 6.831 5.841 5.834

Table 8.2: ND for p = 50% for each size and axis

linear model through the origin was fitted to the proportion of correct “di�erent”
responses for each color di�erence. The resulting models were of the form:

p = V(s)�̇D+ e (8.1)

where s is the size, V is the vector of slopes for the linear models on each axis (L⇤,
a

⇤ , b⇤), D is the vector of color di�erences across each axis, and e is experimental
and observational error. This is shown in Figure 8.5. Table 8.1 summarizes the
slopes data.

Given Equation 8.1, ND(p) = p/V, with ND equivalent to the vector �D. For
example, to compute the distance vector where 60% of the observers saw a dif-
ference, divide 0.6 by V to derive the set of color di�erences in LAB space that
separate two colors with a 60% reliability. The utility of this p value is discussed
in Section 7.5. Classically, a JND is defined as color di�erence where 50% of the
observers identify the di�erence, or ND(50). The collected data generate unique
conventional JNDs for each size (Table 8.2). I can use this data to estimate the
noticable color di�erence for a given size, or ND(p, s), in two di�erent ways.

8.1.5 Predicting Discriminability at a Given Probability

Given a fixed p (likelihood that the di�erence is detectable for the target population),
a designer will want to predict ND(p) as a function of size. Figure 8.6 plots ND(50)
against size. This figure shows that discriminability varies roughly inversely with
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Figure 8.6: ND(50) plotted against size for each of our tested sizes for each axis.
L

⇤ is gray plus, a⇤ is red circle, b⇤ is blue square.

size (Figure 8.7). The resulting equation for this relationship is:

ND(50, s) = C(50) + K(50)/s (8.2)

with the coe�cients for C(50) (the asymptote ND(50) as size grows infinitely) and
K(50) (the rate at which ND(50) increases with inverse size) computed using a
linear regression of discriminability as a function of inverse size (Table 8.3 contains
these coe�cients for p = 50%) .

Axis C(50) K(50)
L

⇤ 5.079 0.751
a

⇤ 5.339 1.541
b

⇤ 5.349 2.871

Table 8.3: C and K coe�cients for ND(50)

As size increases, the K/s term goes to zero, leaving a constant ND(50) of
(5.1, 5.3, 5.3). Visually, this means that JNDs eventually stabalize once marks
are su�ciently large. As size decreases below 1, ND(50) increases more rapidly,
meaning viewers abilities to distinguish between marks decays substantially as
the marks approach a single pixel.

Changing the desired probability of a noticable di�erence p generates a series
of C(p) and K(p) coe�cients. This provides a two-step model for discriminability
as a function of size. First, compute ND(p) for the desired p, then use linear
regression to define the coe�cients for size. To summarize, the model derived in
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Figure 8.7: The plot of ND(50) for each of the 11 sizes vs. 1/size for each of L⇤, a⇤

and b

⇤. (R2
L

= .849696,p
L

< 0.0001; R2
a

= .942234,p
L

< 0.0001; R2
b

= .970395,p
b

<

0.0001)

this section shows that a p% just noticeable di�erence (ND(p)) for a fixed value of
p varies with size (s) according to:

ND(p, s) = C(p) + K(p)/s (8.3)

8.1.6 Generalizing the Model to Size

The previous model captures discriminability for a fixed probability of robustness.
Designers may alternatively about models that vary in p over a fixed mark size.
Based on the results in the previous sections, the solution will have the form:
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Figure 8.8: The distribution of the slope, V vs. size for our data. Gray cross is L

⇤,
red circle is a

⇤, blue square is b

⇤.

V(s) = p/ND(p) = p/(C(p) + K(p)/s) (8.4)

where C(p) and K(p) are the coe�cients in Equation 8.3.
Plotting slope, V, as a function of size gives a non-linear distribution (Fig. 8.8)

where the inverse slope varies inversely with size (Fig. 8.9). The resulting model
has the form:

1/V(s) = A+ B/s (8.5)

which yields a general formula for ND(p, s):

ND(p, s) = p(A+ B/s) (8.6)

where s is size in degrees, p is the probability of a detectable di�erence ([0,1]), and
the values for A and B are shown in Table 8.4.

Axis A B

L

⇤ 10.16 1.50
a

⇤ 10.68 3.08
b

⇤ 10.70 5.74

Table 8.4: A and B coe�cients for Equation 8.5
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Figure 8.9: Linear fit to 1/V vs 1/size for each of L⇤, a⇤ and b

⇤. (R2
L

= .849696,p
L

<

0.0001; R2
a

= .942234,p
L

< 0.0001; R2
b

= .970395,p
b

< 0.0001).

Figure 8.10: The figure shows the color di�erence step needed for 50% discrim-
inability (ND(50)) for each axis as a linear model of 1/size. Colored bands are
labeled with the range of color di�erence values for each axis.
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8.1.7 Discussion

The models generated in this section help designers reason about discriminability
as mark sizes change. For example, Figure 8.10 shows the di�erent ND(p, s)
regression lines for p = 50 for each axes. The shaded bands show the variation in
�L

⇤, �a⇤ and �b

⇤ over the range of sizes, with the band size increasing for L

⇤ vs.
a

⇤ vs. b

⇤. Each of these models generates a single scaling parameter based on the
size of a mark s and the desired discriminability level p.

Part of the challenge with designing for marks of di�erence sizes is that not
only discriminability but overall appearance changes as colors get small—small
stimuli appear less colorful. However, in practice, the models provided here
allow designers to, at a minimum, ensure su�cient discriminability in encoding
design. For example, in Figure 8.11, both the large and small patches are stepped
according to the parameters of the current size model. Ideally, the color di�erences
will seem the same independent of size. For comparison, the small patches are
also shown with the same color steps as the large patches, and should appear
less di�erent.

8.1.8 Conclusion and Future Work

The work presented in this section o�ers a simple model for computing color
di�erence as a function of size. While these results are preliminary, this sort of
data-driven modeling shows strong promise for creating practical results. The
data indicates that a minimum step in CIELAB of between 5 and 6 is needed
to make two colors visibly di�erent for large shapes (2-degree or larger), which
matches well with the intuitions that my collaborators have developed through
design practice. The asymmetry between L

⇤ and the two axes that together define
hue and chroma (a⇤ and b

⇤) also matches designer experiences (e.g. Samsel et al.
[2015]).

In practice, these models are somewhat limited by their bind to symmetric
marks: all studies were conducted using colored square patches. Future work
will include studies to refine the model parameters, including a consideration of
non-symmetric marks, and to explore the e�ect of background color on these
judgments.
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(a) (b)
Figure 8.11: Assuming a viewing distance of 24 inches, the (a) large patches are 2
degree squares and the (b) small patches are 0.5 degrees. Horizontally adjusted
patches are two ND(50) steps di�erent as computed from the model formulas. For
comparison, the 0.5 degree squares are also drawn with the 2-degree values. The
di�erences are subtle, but important: the 2 degree color di�erences become more
di�cult to see when applied to smaller marks. Scaling color di�erences according
to size results in color di�erences at 0.5 degrees that better match the di�erences
for 2 degrees.
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8.2 Color for Elongated Marks
The color-size model from this chapter provides metrics for creating color encodings
for small marks of a uniform height and width. By designing for the smallest
expected mark, the metric gives designers a lower-bound on how discriminable
their encodings will be. In practice, marks often are not uniform: visualizations
can use the length of a mark to encode data. For example, blocks within a tree
map may vary in width and height. The length and height of scatterplot points
can also be used to encode values.

In visualization, designers often constrain the valid range for the length and
width of a mark to prevent marks from becoming too small or too large. Designers
can use these constraints to create encodings that are robust for the smallest
possible mark size they expect to occur (e.g. the lower-bound on a size encoding).
Color encodings that are discriminable for the smallest allowed dimension of a
mark will become more discriminable for larger marks—data mapped to di�erent
values in a color encoding will only become more discriminable as size along any
given axis increases.

For some visualizations, designers may not be able to fully constrain the size of
a mark. For example, bar charts vary the height of a bar to encode value, but this
height is di�cult to constrain—small values map to small heights. A designer
does not always know ahead of time what length the bar will be, but constraints
are often imposed on the width of a bar. Previous work suggests that increasing
the length of two rectangles of di�erent colors makes it easier to tell a di�erence
between them, and that elongation, not area, is the primary factor in e�ciently
distinguishing between marks [Highnote, 2003]. This means that for cases where
designing for the smallest dimension is not possible, instead designing for a known
dimension can provide some guarantees of robustness—the longer dimension will
be a primary predictor of discriminablity. Therefore, color encodings based on
the minimum width of a bar will remain distinguishable for the majority of cases
(below a certain ratio of side lengths, gains from elongation level out). If the height
of the bar is smaller than the width, the width becomes the elongated size and
should play a significant role in preserving discriminability.

However, this prior work measures how quickly di�erent sets of marks with large
color di�erences could be identified. In visualization, designers often care about
encoding subtle changes between values using color, especially for large amounts
of ordinal data, and analysts often have unlimited time to view a visualization.
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The color-size model explains how size might influence color under a di�erent
measure (small color di�erences modeled based on accuracy).

In this section, I present an experiment verifying that the color-size model
is robust for changes in bar height. In this study, I do not look to model how
discriminability changes with height—the height of a bar is often unknown to a
visualization designer a priori—but to show how modeling discriminability with
respect to width can help ensure discriminability.

8.2.1 Methods

Discriminability for bars was measured using two experiments—one for each of
two di�erent bar widths—using the same methods as in Section 7.5. Participants
saw bars of either 0.5 or 1 degree of visual angle. Bars were placed four degrees
apart among mid-grey distractor bars of random heights (Fig. 8.13). Colors
were drawn form 14 colors sampled uniformly across L

⇤, a⇤, and b

⇤. Tested color
di�erences were 0.25, 0.5, 0.75, 1, 1.25, and 2 ND(50,w) units apart, where w

corresponds to the width of the bars. Tested bar heights were 0.5, 1, 3, 5, and 7
degrees.

After completing three training stimuli to introduce participants to the definition
of “same” and “di�erent” colors, participants reported whether they perceived a
color di�erence for 98 bar charts. Each participant saw each tested color six times
and each combination of height ⇥ color di�erence three times. Three stimuli were
mapped to large color di�erences and five to identical colors (one per tested height)
for validation.

I analyzed performance for 140 participants (70 per condition; 53 female,
87 male; mean age 32.32, � 9.33) of an original sample from 152 participants.
Three were excluded for performance on the “very di�erent” stimuli, and nine for
performance on the equal color bars.

8.2.2 Results

I analyzed performance for each width condition using a three-way Chi Squared
Test (height, the L⇤ of the color, and the color di�erence in �E) comparing par-
ticipant responses. For both widths, discriminability increased with bar height
(�2

1(1,N = 70) = 151.08,p1 < .0001, �2
0.5(1,N = 70) = 94.95,p0.5 < .0001).

Since color discriminability (and tested step size) both vary with bar width,
I compared performance across both conditions using a Chi-Squared with the
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(a) Bars 0.5 degrees wide.

(b) Bars 1 degree wide.

Figure 8.12: Participants were asked to report whether or not two bars were the
same color. Bars were placed four degrees of visual angle apart, and surrounded
by mid-grey distractor bars to increase task validity.
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Figure 8.13: Breaking down performance by height and width shows comparable
color matching performance for both 0.5 and 1.0 degree bars. Discriminability
changed at roughly the same rate for both widths across all heights. Relative
heights are shown at the right for comparison (height and width are scaled down
approximately 75% to fit within the page). Error bars present 95% confidence
intervals.

color di�erence expressed as multiples of a JND (e.g. a di�erence of .25 for an
absolute color di�erence of .25 * 1 JND). I found a highly significant e�ect of width
(�2(1,N = 140) = 153.78,p < .0001), height (�2(1,N = 140) = 258.49,p < .0001),
L

⇤ (�2(1,N = 140) = 166.84,p < .0001, Fig. 8.14), and color di�erence (�2(1,N =

140) = 3779.63,p < 0.0001). I also found a significant interaction e�ect between
color di�erence and height (�2(1,N = 140) = 24.86,p < .0001) but not between
color di�erence and width (�2(1,N = 140) = .2068,p = .6493) or between height
and width (�2(1,N = 140) = .0308,p = .8606).

For both widths, discriminability significantly increased with height (Fig. 8.14).
This suggests that as marks grow longer, discriminability increases. An alternative
explanation of these results is that discriminability increases with area as area is
correlated with height. While height was a significant predictor of performance,
the area of a mark (height * width) did not appear to have a systematic e�ect on
performance (Fig. 8.15). These results align well prior work [Highnote, 2003]: the
longest edge of a bar is more important for discriminability than the area. This
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Figure 8.14: Detecting color di�erences between bars becomes easier as bars
grow taller. This increased discriminability for longer bars appears to be limited:
discriminability gains appear to level o� for the larger tested heights.
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Figure 8.15: Changes in height are correlated with changes in area. However, area
does not appear to systematically e�ect the apparent color di�erences between
bars across the tested bar widths. This result confirms results from prior work:
elongation is more important to discriminability than area.
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Figure 8.16: Performance at di�erent color di�erences for short (1 ⇥ 0.5 bars,
blue) and the equivalent square bars (1 ⇥ 1, red). The only significant di�erence
in performance in for 0.5 JNDs. This suggests that discriminability based on
length is reasonably robust for the shorter bar. This performance likely breaks
down in extreme cases (e.g. bars of one or two pixels). Future work might explore
discriminability as a function of the ratio of bar height to width.

also correlates with findings from the color-size model: discriminability varied
inversely with length as opposed to area (length * length).

In one tested condition, the height of the bar was smaller than the width (1
degree width, 0.5 degree height, upper-left corner of Fig. 8.13). For this condition,
I only found significant performance di�erences between the uniform mark size
(1 ⇥ 1) and the shorter mark size (1 ⇥ 0.5) for a color di�erence of 0.5 JNDs
(Fig. 8.16). This finding provides preliminary evidence that designing for known
constraints in a visualization, like the minimum allowable bar width, can guide
e�ective encoding design. The shorter bar had half the area but an equally large
longest side and could be distinguished roughly as e�ectively. However, there are
known limitations on this elongation e�ect: discriminability degrades significantly
once the height is a fixed proportion smaller than the width [Highnote, 2003].
Better understanding this ratio will allow designers to better reason about the
robustness of encodings developed with this model.

8.2.3 Discussion

These results provide initial evidence that robust color encodings for bar charts
can be designed by considering only the width of a bar. These results show that as
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a bar increases in height, discriminability increases. Area does not appear to be
the primary factor in determining discriminability. Instead, in line with previous
research, discriminability increases more closely with elongation.

This study provides preliminary evidence of how robust color encodings can be
applied to elongated marks. It does so using only two sizes and a fixed number
of heights. Further, in only one condition is the bar shorter than it is wide. As
marks become very short (on the order of one or two pixels), discriminability is
likely to degrade substantially regardless of the width of a mark. It is unclear,
however, whether colors can be discerned with much fidelity at all at extremely
small scales—the necessary color di�erences may be too large to e�ectively design
for.

Future work should build on this study by exploring a wider range of widths,
heights, and aspect ratios. This study could provide more robust guidance for
designing color encodings as a function of size and could lead to new models of
color di�erence for specific mark types.

8.3 Applications to Color Encoding Design
The experiments in this chapter show that size is an important parameter for
designing e�ective color encodings. The resulting models can be used to design
encodings that are robust at a certain size or evaluate how suitable existing
encodings for di�erent visualization designs. In this section, I briefly discuss how
these results might be used to inform color encoding design for visualization to
provide color encodings with uniform perceptual di�erences, to adjust encoding
designs for di�erent mark sizes, to tune encodings to support special values, and
to design systems for tailoring encodings to a visualization.

8.3.1 Guiding E�ective Color Encodings for Di�erent Mark
Sizes

The metrics introduced in this dissertation allow designers to create color encod-
ings where the di�erences between each step in an encoding are perceptually
uniform. For example, viewers can identify control colors in a sequential color
ramp that represent the first and last steps in an encoding. The intermediate
steps are computed by uniformly interpolating colors between these two points.
Interpolating control colors in CIELAB ensures that the color di�erences between
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ColorBrewer

Linear Interpolation

Linear + Shift
(a) ColorBrewer Greens

ColorBrewer

Linear Interpolation

Linear + Shift
(b) ColorBrewer Yellow-Green-Blue

Figure 8.17: Allowing designers control over ramps is a trade-o�. Perceptually-
uniform ramps can be interpolated between desired colors in CIELAB, but this
flexibility requires designers to select visually pleasing combinations. Designers
can use existing hand-generated ramps as guides for creating new encodings. For
example, ColorBrewer ramps use small color shifts to introduce visual appeal.
Cylindrical interpolation in CIELAB can produce encodings with uniform perceived
distances but are less visually appealing. Allowing designers to introduce small
shifts to the center color of a ramp and interpolating uniformly along the resulting
curve can significantly enhance the visual appeal of an encoding.

any two subsequent steps are approximately perceptually equivalent. If designers
know, for example, the minimum mark size for their visualization, they can use the
color-size model presented in this chapter to pick step sizes that will be e�ective
for their target visualization. They can also use the scaling parameters presented
in these models to normalize color interpolation along L

⇤, a⇤, and b

⇤ to account
for known variations in color perceptions between axes.

Interpolating in CIELAB is also beneficial as it allows designers to create percep-
tually smooth color encodings without extensive design expertise [Wij�elaars et al.,
2008]. The metrics provided here can guide how finely the interpolation should
sample CIELAB for steps to be su�ciently distinct. For example, visualizations
commonly use ramps from ColorBrewer [Brewer et al., 2003b] to encode data.
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20 pixel wide marks 6 pixel wide marks 6 pixel wide marks 
with boosted color differences

Figure 8.18: The color-size models presented in this chapter can be used to design
encodings that are robust to mark sizes. For example, color encoding designed
for 20 pixel wide marks (left) becomes more di�cult to distinguish when it is
applied to six pixel wide marks (center). By scaling di�erences in the original
encoding using this model, the endpoints of the encoding are pushed further apart
at smaller scales (right) to better match the perceived di�erences in encodings
designed for larger marks and better support point tasks.

These ramps are visually appealing and used extensively in practice, but because
they have been constructed by hand, designers using them must pick from a set
of existing ramps. However, designers might need to generate encodings using
specific colors not included in this set for several possible reasons, including
aesthetic or semantic characteristics of the data [Lin et al., 2013]. Designers can
interpolate between any two desired colors in CIELAB to generate a reasonable
color encoding without the expertise required to handcraft e�ective encodings.

Handcrafted ramps can then be used for design inspiration. For example, Col-
orBrewer ramps often introduce small nonlinear variations between endpoints to
improve visual appeal. These variations can be modeled in CIELAB by introducing
third control color near the center of the ramp. By displacing the center color and
interpolating along the curve through the three control colors (start, middle, and
end), interpolated encodings can closely approximate ColorBrewer (Fig. 8.17).

The metrics generated in this dissertation help designers reason about the
distances with which control points can be interpolated to remain e�ective for a
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Figure 8.19: Color steps that are readily discriminable can be used encode special
values within a visualization. The results from Section 7.7 can be used to generate
encodings to represent outliers. For example, the crowdsourced ramp in Figure 1.4
encodes values using luminance. Outlier colors could be generated by extending
the luminance interpolation on either end of this ramp by one readily discriminable
knee step (top, first and last color). Adding an equivalent hue step in either direction
(bottom, first and last color) generates outlier colors that appear even more distinct
from the primary encoding but still preserve the perceived order of outlier values.

target design. Designers can use the color-size model discussed in this chapter to
tailor encodings to anticipated mark sizes in two primary ways. First, designers
can specify a mark size before selecting control colors. The number of possible
steps in an encoding is then bounded by the number of su�ciently distinct steps
between the control colors. Alternatively, designers can first create a color encoding
and then adjust the control colors to scale perceived di�erences between values.
This approach pushes colors apart or pulls them together to preserve the perceived
di�erences between steps in an encoding as marks change in size. The di�erences
between steps in the encoding can be scaled by:

�E

new

= �E

old

⇤ ND(50, s
new

)

ND(50, s
old

))
(8.7)

This reduces color di�erences as marks grow and boosts di�erences as marks
shrink (Fig. 8.18). The new colors can be iteratively refined by manipulating the
new control points of the encoding. The resulting encodings are probabilistically
robust for a desired mark size: color di�erences that encode value are tuned to
the visualization design to support point visualization tasks.

8.3.2 Designing Outlier Colors

Color encodings may also need to adapt to the data itself. For example, the distribu-
tion of a dataset can impact how e�ectively an encoding represents data. Extreme
outliers or long-tailed distributions can bias color encodings—a small amount
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(a) (b) A scatterplot with
marks of a uniform size.

(c) A bar chart where the
width of each bar matches
the diameter of a scatter-
plot point.

(d) A line graph where line
width matches the diame-
ter of a scatterplot point.

Figure 8.20: E�ective color encodings should be tailored to mark of di�erent
shapes and sizes. For example, colors that are useful for (b) scatterplots appear
brighter for (c) bars of equal width. The encoding breaks down when mapped to
(d) intersecting lines in a line graph. The work presented in this chapter provides
first steps in understanding how designers can tailor color encodings to support
di�erent visualization designs.

of data consumes a large proportion of the range of an encoding. Visualizations
can try to tailor how colors map to data value to account for these distributions
[Tominski et al., 2008], but this requires knowing the data distribution in advance.
It also requires the viewer to mentally compare values along less intuitive scales
[Aigner et al., 2011]. In practice, analysts may instead want to bin these values
and represent them using a single outlier color.

Encodings can be designed to include outlier colors to represent binned outliers.
Outlier colors should be appear readily distinct from the rest of the encoding.
This ensures that outliers will not be confused with data values in the primary
encoding. Outlier colors should also be perceptually ordered with respect to the
primary encoding: high value outliers should be perceived as higher than other
values. Figure 8.19 shows how the “knee” metric (Section 7.7) can be used to
generate e�ective outlier colors for quantitative data. Scaling knee distances for
di�erent mark sizes can ensure these colors remain readily discriminability in
practice.
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8.3.3 Considering Visualization Designs

Color encodings might need to account for size di�erently across mark types. For
example, Section 8.2 shows how encodings for bar charts can be designed for bar
widths, whereas scatterplots might instead be constrained by the smallest allowed
mark size. Aesthetic concerns may also vary across mark size. For example,
the colors in Figure 8.1 appear bright and saturate in bar charts but appear
softer when mapped to a scatterplot. Likewise, the same color choice may be
inappropriate for other mark types (Fig. 8.20). In practice, color encodings that
are good for small marks are often bright and saturate, whereas visually appealing
colors for large marks should generally be more subdued [Munzner, 2014].

Both visual appeal and discriminability are important for e�ective encoding
design [Cawthon and Moere, 2007]. To better understand visual appeal and
discriminability in practice, encoding design tools should provide designers with
the tools to account for these properties when developing an encoding. For example,
systems could tailor color encodings for web-based visualizations by allowing the
designer to specify a set of desired control colors, the desired discriminability
level (p) and the anticipated mark size (s). These parameters serve as inputs
to the color-size metric which, as discussed above, can be used to generate an
appropriate color encoding. The encoding can then be previewed using di�erent
mark types, such as points, bars, or lines, to refine the aesthetic properties of
the encoding for a target visualization design (Fig. 8.20). These metrics allow
systems to put full aesthetic control in the hands of the designer while providing
probabilistic guarantees of how accurately encodings will be interpreted.

8.4 Discussion
This chapter discusses a model for determining color di�erence as a function of
mark size. It also shows how this model can support e�ective encoding design
for variable size marks. Designers can use these metrics in a number of di�erent
ways to construct color encodings that are robust to the mark sizes used in a
visualization and better support point tasks.

This model assumes that to goal of good encoding design is to ensure data
mapped to di�erent values are su�ciently distinct. This choice is a trade-o�:
increasing discriminability in a color encoding increases the distance between
colors. As there are only a finite number of pixel colors, this reduces the total
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number of colors available to represent data. In some cases, a designer might
prefer to map data to a larger number of less distinct colors.

The color-size model supports this trade-o� by being probabilistic—the designer
controls how important discriminability is using the p parameter. Higher p values
privilege discriminability, whereas lower p values provide more usable colors.
While this approach provides the designer with control over encoding design, it is
unclear what settings of p are optimal. Better understanding of how this parameter
can guide e�ective design is important future work.

This chapter also only considers two kinds of marks (squares and bars). Other
mark shapes might introduce interesting variations. For example, lines tend to
be much thinner than bars and also often curve. Wedges in a pie often have
a known length, but an unusual shape. Measuring discriminability for these
marks can guide e�ective color encoding design across di�erent visualization
types. For visualizations where sizes vary between marks, such as bar charts,
changes in mark size influence the apparent di�erence between marks in the same
visualization. For example, the color di�erence between two small bars might
appear smaller than the same di�erence mapped to two large bars. Accounting for
this phenomena would require tuning color encodings whenever a visualization is
rendered; however, there are no known models that capture this phenomena. I do
not anticipate that variable mark sizes will significantly hinder the utility of these
models in practice, but verifying this is important future work.

The results in this chapter, as well as the other chapter in this half of the
dissertation, focus on quantitative encodings, where visualizations present or-
dered data. The color-size model could also be used to improve encoding designs
for categorical data, as in Figure 8.1. In categorical data, colors help viewers
discriminate between di�erent groups. E�ective encodings for categorical data
follow di�erent rules than quantitative data [Brewer, 2006]. Unlike quantitative
encodings, simply “pushing” color di�erences apart as categorical marks grow
smaller might not be su�cient—because encodings are unordered, it is unclear
in which direction color di�erences should be scaled. Understanding how to use
these models to refine categorical encodings is important future work.
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Color has a long history of use in visualization [Bertin, 1983]. Graphical perception
suggests that color is of limited utility for tasks that require the viewer to estimate
precise values [Cleveland and McGill, 1984]. As the amount of data being visualized
increases, visualizations must consciously consider how viewers can use these
displays to estimate high-level aggregate properties of the data e�ectively while
still supporting analysts in understanding individual data values. Color has many
desirable properties for such scalable visual aggregation. This dissertation shows
how designers can leverage color e�ectively to provide high-level overviews of data,
and can mitigate some of the limitations of color at lower levels through careful
encoding design.

To understand how color might support visualization and visual aggregation as
datasets grow in size and complexity, I have organized and applied findings from
perception to help identify potential limitations in traditional approaches to one-
dimensional data visualization. This organization illustrates the potential benefits
of color over traditional encodings for visual aggregation tasks. At scale, color is
limited by the number of available pixels and the perceptual processing power
available to make sense of those pixels. To address this limitation, I introduce
a method for task-driven aggregation of one-dimensional data that can help
designers visualize longer data sequences while preserving local control. This
method also introduces designs for encoding aggregate data to support di�erent
visual aggregation tasks as datasets scale beyond the available pixels.

To evaluate these theories and designs for visualization, I empirically measured
how eight relevant aggregate encodings for time series data support visual ag-
gregation. This evaluation explored performance with respect to what aspects
of the data are visualized, how data are visually represented, and how data are
mapped to that representation. In these experiments, I showed that these three
properties of creating a visualization can predict performance for di�erent kinds
of visualization task. Most critically, it demonstrated that color better supports
viewers perform tasks that derive new values from a collection of datapoints,
whereas position better supports viewers in identifying important values in the
distribution.

I demonstrated the scalability of these methods in three real world applications:
sequence comparison, text analysis, and structural biology. The resulting systems
supported aggregate analyses at scales significantly larger than previous systems.
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In each case, domain experts were able to use these systems to generate new
insights into their data. I hope that these designs will inspire future work not only
in considering how to support visual aggregation at scale, but also in reconsidering
the utility of color in visualization.

Visual aggregation is likely to become increasingly important as datasets in-
crease in both size and complexity, but visualizations still must support point
tasks in order to be e�ective for real world analyses. One way to support these
tasks is to design other aspects of a visualization to better support point-level color
interpretations. For example, in surface visualization, the structure of a surface is
important to understanding data in context, but shading used to convey surface
depth darkens encoded data. Through a series of experiments, I show how careful
visualization design can improve (or impair) color identification performance for
surface visualization.

Another way to improve performance for point tasks is to design encodings that
map data to distinct colors. Distinct colors can help viewers select for interesting
values or compare value di�erences between individual datapoints. Visualization
designers generally rely on metrics to understand how di�erent colors must be
to appear distinct. Most of these metrics are based on findings from perceptual
psychology which were designed for a di�erent purpose—to model the sensitivities
of the eye—and therefore are often impractical for visualization. I introduce a
method for deriving color encodings under more practical conditions. Using this
method, visualization designers can derive probabilistic models of color di�erence
perception by sampling perceptions from a target audience. I used this method
to derive a model of color perceptions for crowdsourced viewers that can inform
encodings for web-based visualizations.

Viewers’ abilities to distinguish between encodings are also influenced by the
size of a mark. Unlike in surface visualizations, the size of a mark is often
inherently bound to the data or display. I derive a model for color as a function of
size. I show how this model can be applied to generate robust encodings even for
designs where the minimum mark size may be unknown a priori, such as in bar
charts. To demonstrate the utility of this model for visualization design, I present
a system for authoring color encodings based on this model.

These findings collectively inform how visualization can leverage color to support
complete data analyses by supporting both aggregate tasks at large scales and
point tasks over specific values.
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9.1 Issues & Limitations
There are many unexplored issues and limitations in this work. Many of these
limitations are discussed within their component chapters. Here, I will outline
additional limitations and issues, focusing on limitations of that span multiple
projects. Some provide interesting avenues for future work, but do not necessar-
ily reduce the contributions of the presented projects. Others are issues that
should be addressed in order to improve the utility of these results for visualization.

Supporting Di�erent Visual Aggregation Tasks: This discussion of visual ag-
gregation in this dissertation focuses on a specific set of abstract tasks (extrema,
range, mean, variance, and outliers) and on tasks from specific domains (genomics,
text analysis, and structural biology). A broader consideration of the di�erent
kinds of visual aggregation tasks that can be conducted (and how visualizations
might support them) is necessary. This will open new research questions for
graphical perception and help designers reason about how to support these tasks
in practice.

Performance Costs of Visual Aggregation: Visual aggregation can allow viewers
to find and estimate high-level patterns in data. However, visually estimating this
information likely comes at a cost. For example, some aggregate judgments may be
infeasible or ine�cient for the visual system to compute and would be better sup-
ported by explicit computation. Understanding when and why designers should
support visual aggregation rather than computational methods is important for
understanding its utility in practice.

Scalability Evaluation: The claims about scalability made in the first part of this
dissertation are validated by proof-of-concept. While the techniques presented
here help visualizations scale beyond existing limits, it is unclear how extensively
these methods scale. A more extensive evaluation, both quantitatively evaluating
how these designs support aggregate analyses and when they might break down,
would provide a better understanding of how these designs support scalability.

Balancing High-Level and Low-Level Goals: The goals of the first and second
half of this dissertation may be somewhat at odds–the first relies on the visual
system combining color and the second on di�erentiating color. It is important
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that a data encoding supports the appropriate perceptual goals. Continuous but
discriminable colors will still support visual aggregation and be robust for more
exacting judgments. Distinctly discriminable colors may impede perceptions of ag-
gregate gradients in data. There is a trade-o� between inherent in designs for each
task. The presented models address this constraint by being probabilistic—they
let the designer decide. Understanding the trade-o�s involved in discriminability
for both visual aggregation and point-level tasks will help designers to reason
about this trade-o�.

Continuous Multiscale Visual Analysis: This work focuses on visualization
tasks at two levels: aggregate (visual aggregation) and point (value comparison).
Visualization analysis, in reality, often necessitates that viewers can explore data
across continuous levels of detail. For example, a biologist might compare large
sets of genomes to understand evolutionary relationships across species. At an
aggregate level, they can understand how similar a large set of genomes are overall
and identify subsets of genes with interesting behaviors. They can then explore
these subsets in more detail to find individual genes to explore at lower levels
of detail. The work presented in this dissertation explores how visualizations
might support the first and last pieces of this workflow. Understanding how
visualizations might remain e�ective as analysis moves across di�erent levels of
detail is important future work. This includes testing the assumption that using
a consistent encoding across all levels of detail reduces cognitive burdens on the
user. It is alternatively possible that multiscale analysis should change visual
encodings at di�erent levels of detail.

Interaction: All of the studies presented in this work consider only static analyses.
While interaction can complicate study design, it provides a number of potential
benefits for completing visualization tasks. For example, instead of visually esti-
mating an answer, the user can interact with data to compute exact quantities on
the fly. Interaction may also provide methods for balancing aggregate and point-
level goals in visualization, such as by refining encodings on the fly [Elmqvist
et al., 2011]. A better understanding of how interaction can be used in practice to
support aggregate and point tasks would substantially inform visualization design.

Mitigation Limitations in Color Perception: The presented methods for design-
ing color encodings for point tasks focus on how designers can mitigate perceptual
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limitations agnostic to data. As a result, designers consider only the worst case
designs, meaning these models will generally overcorrect for potential error. Alter-
native methods have been proposed that instead correct colors after a visualization
has been rendered [Mittelstädt et al., 2014]. This represents a trade-o�. Data-
agnostic methods are only need to be considered at design time but can only
approximate corrections based on design constraints. Data-aware methods are
computed every time the view changes, but can potentially provide more accurate
perceptions of color. Better understanding this trade-o� is important future work.

Color Vision Deficiencies: The work presented here assumes normal color vision.
However, accommodating colorblind viewers introduces a new set of questions
to consider. For example, how can color encodings be designed such that visual
summaries are meaningful for colorblind viewers? How can we generate models of
color di�erence perceptions that capture viewing needs associated with di�erent
forms of color blindness? I anticipate that the modeling procedures introduced
in Chapter 7 can inform encoding metrics that account for color blindness in
practice, but future work is needed to confirm this hypothesis.

Contextualizing Visualization Tasks: The models constructed in this work ask
participants to answer intentionally specific questions (e.g. do the bars appear
to be the same color?). These tasks are designed to simplify modeling by asking
directly for relevant percepts. This choice may trade-o� modeling simplicity for
ecological validity: they may or may not capture the strategies used to compare
values in a visualization. A deeper evaluation of how question framings influence
color identification performance is necessary to understand this limitation.

Generalizability: The generalizability of the models presented in this work is
only validated to a limited extent. For example, the color modeling method is only
tested for crowdsourced viewers and for marks of di�erent sizes. It is unclear
how well these results translate to, for example, cell phone viewers or marks of
di�erent shapes. This provides some evidence in support of the design metrics
developed here, but needs to be expanded to better understand how these metrics
can be used in practice.
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9.2 Future Work
This work represents first steps in many directions. Many potential research
projects could build on this work.

Two-Dimensional Aggregation: The systems and techniques presented in the
first part of this dissertation attempt to overcome horizontal limitations in screen
space by aggregating along one dimension. I intend to extend these ideas to sup-
port the aggregation of multiple sequences together to further increase scalability
by increasing the number of distinct sequences or series that can be visualized at
any given time. I will represent these aggregate sequences by leveraging alternative
visual features that might also support visual aggregation tasks, such as size.

Broader System Deployment: The systems in this work have only been de-
ployed to a limited number of users. I hope to increase the value of these systems
by making them available to a broader audience.

Color Appearance as a Function of Size: In this work, I consider how dis-
criminability changes as a function of size. Part of the reason marks become more
di�cult to distinguish as they become smaller is that their general appearance
shifts. By instead modeling this shift, designers can correct for this shift when
data is displayed in order to ensure that all marks appear identically. Building a
computationally-tractable model of color appearance as a function of size to use
for these applications is important future work.

Considering Other Visual Encodings: This dissertation focuses on color. Many
of the knowledge gaps addressed in this dissertation exist for other encodings as
well. For example, orientation is well-studied in perception and has been shown to
be e�ectively averaged by the visual system. In visualization, orientation is often
dismissed as being less e�ective for encoding point information. A better under-
standing of how di�erent encoding channels might support visual aggregation
could inform novel visualization approaches.

These works collectively reframe how visualization designers can think about
color in visualization. They present evidence for the utility of color for aggregate
tasks and methods for reframing how designers reason about color for comparing
individual values. I do not intend for the work presented here to be the final word
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in considering visualization designs for aggregation, nor for understanding color
in practice. I see this dissertation instead as guiding new conversations about
color in visualization.
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