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Abstract
Data summarization allows analysts to explore datasets that may be too complex or too large to visualize in detail. Designers
face a number of design and implementation choices when using summarization in visual analytics systems. While these choices
influence the utility of the resulting system, there are no clear guidelines for the use of these summarization techniques. In this
paper, we codify summarization use in existing systems to identify key factors in the design of summary visualizations. We use
quantitative content analysis to systematically survey examples of visual analytics systems and enumerate the use of these design
factors in data summarization. Through this analysis, we expose the relationship between design considerations, strategies for
data summarization in visualization systems, and how different summarization methods influence the analyses supported by
systems. We use these results to synthesize common patterns in real-world use of summary visualizations and highlight open
challenges and opportunities that these patterns offer for designing effective systems. This work provides a more principled
understanding of design practices for summary visualization and offers insight into underutilized approaches.

Categories and Subject Descriptors (according to ACM CCS):

CCS Concepts
•Human-centered computing → Visualization theory, concepts and paradigms;

1. Introduction

Visual analytics systems help users navigate large and complex
datasets. These datasets often have too much data or too many di-
mensions to display in one view, requiring designers to engineer
systems that summarize available data. These summary visualiza-
tions use visual and statistical techniques to purposefully reduce
(i.e., summarize) the amount of data shown to viewers such that
systems can manage the scale and complexity of large datasets. Ex-
amples of summary visualizations include aggregating data across
selected dimensions into histograms, projecting high-dimensional
data into a two-dimensional scatterplot, and summarizing actor-
network relationships between entities captured from a text cor-
pora. Designers draw from a large body of techniques when con-
structing summaries. For example, they may heuristically filter
data, compute statistical quantities, or visualize bounds of data se-
ries rather than individual points.

The choices made in constructing summary visualizations deter-
mine the kinds of analyses supported by the end system and may
guide viewers towards specific characteristics or subsets of data. As
a result, the analyses, tasks, and data that a system needs to support
are all factors that must be considered when designing a summary
visualization. However, there is little systematic guidance for rea-
soning about these factors. In this paper, we aid designers by identi-

fying key factors that must be considered in the design of summary
visualizations. We identify trends in how designers use these fac-
tors to provide a basis for a more structured consideration of the
design of summary visualizations. These trends can advise design-
ers in considering different aspects of design, indicate what kinds
of design patterns are most common, and help transfer approaches
across domains to inspire new designs.

We elicit these trends using a structured literature survey of sum-
mary visualization in visual analytics tools and quantify the use
of different design factors to answer key questions about the de-
sign and use of summaries. Across these visualizations, we find
that designers regularly considered four key factors: the narrative
function of the visualization (its purpose), the data types used, the
method for reducing that data (data summarization), and the op-
erations supported by the visualization (its tasks). To simplify the
broad range of options available for data summarization, we intro-
duce a taxonomy of summarization approaches that captures the
breadth of methods used in summary visualizations while allow-
ing designers to weigh trade-offs between methods. This taxonomy
consists of four categories: aggregation, subsampling, filtering, and
projection. Our survey suggests that this taxonomy sufficiently cap-
tures common strategies for data summarization and helps to iden-
tify trade-offs between summary approaches.
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Figure 1: A schematic of a generalized process for visual analytics with data summarization. A dataset (left) is reduced using data sum-
marization techniques (center), comprised of four basic methods (aggregate, project, subsample, filter), and is presented visually to support
judgments of high-level data characteristics (right). Both the summarization and visual presentation are factors that influence the efficacy of
summary visualization to enable viewers to make high-level judgments.

We use quantitative content analysis (QCA [RLF98]) to sys-
tematically characterize how the four design factors (purpose, data
type, summarization method, and tasks) manifest in summary vi-
sualizations. Based on this characterization, we find that choices in
these factors influence the types of analysis tasks supported by the
resulting visualization. We identify common themes in how design-
ers employ these factors in practice and how each factor contributes
to the end utility of the system (Figure 1). These themes allow us to
synthesize common practices in existing summary visualizations as
well as identify underexplored design compositions that offer new
possibilities for summary visualization.

Contributions: We provide a categorization of the factors in sum-
mary visualization design constructed through a systematic survey
of the visualization literature conducted using QCA. Through this
analysis, we

• provide a taxonomy of data summarization techniques used in
summary visualization (§2–3);
• use this categorization and prior categorizations of purpose, data,

and tasks to survey and analyze summary visualization design
practices (§4);
• identify design patterns and trade-offs in summary design (Ta-

ble 2), as well as potential opportunities for innovation (§4–5)
grounded in existing practice.

This work provides a foundation for systematically reasoning about
summarization in visual analytics and identifies gaps in our under-
standing of summarization in visualization design.

2. Background

In this work, we define a summary visualization as the result of an
explicit set of design decisions that compress and/or simplify data
for display, which includes choices of data reduction methods and
visual representations. These visualizations communicate proper-
ties of a dataset using fewer marks than there are data entities, con-
veying the “gist” of critical high-level properties determined by the

viewers’ needs, data types, and necessary tasks. Summary visual-
izations provide analysts with a concise and focused representa-
tion they can use to navigate, sift, and winnow data [Shn96]. As an
example, a scatterplot with points aggregated using KDE consti-
tutes a summary visualization—it transforms individual points to
spatial densities. In contrast, “zoomed-out” representations, such
as a standard parallel coordinates plot with thousands of elements
but no explicit data minimization, do not meet the criteria for a
summary visualization: while individual relationships may be dif-
ficult to distinguish due to factors such as overdraw (see Fekete &
Plaisant [FP02] and Cui, et al. [CWRY06]), the visualization does
not intentionally summarize the data.

We draw on prior visualization taxonomies and design spaces as
well as our own observations to identify four key factors in sum-
mary visualization design: data summarization method, purpose,
task, and data type. We use these factors to understand how they
can collectively guide the design and evaluation of summary vi-
sualizations. We look to related work in order to characterize these
factors and use these characterizations to synthesize a codebook for
a structured exploration of the visualization literature.

2.1. Factors of Summarization in Visualization

Data Summarization Methods: Data summarization reduces the
scale and complexity of data for display in a summary. We specif-
ically consider methods that summarize data in ways that provide
a faithful representation of the underlying dataset. Prior work sug-
gests general methods of re-organizing data for visualizations rel-
evant to summary visualization. For example, Card & Mackin-
lay [CM97] offer a set of functions to process data for visual-
ization: filtering, sorting, multidimensional scaling, and selection
by slider. Ellis & Dix [ED07] taxonomize clutter reduction tech-
niques for visualizations, including three techniques (sampling, fil-
tering, and clustering) that explicitly reduce data. While clutter re-
duction is one goal of summarization, summary visualization must
achieve a broader set of goals, including managing data scale, elic-
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iting specific data characteristics, and guiding analysis. Elmqvist
& Fekete [EF10] also survey aggregation techniques, focusing on
hierarchical organization. In this work, we build on initial insights
into aggregation introduced by Elmqvist & Fekete, and extend this
analysis to a broader set of summarization methods.

We propose a taxonomy of data summarization methods that
includes four categories: aggregation, subsampling, filtering, and
projection (see §3.2 and §4.1 for details). We anticipate that the
category of method used in a summary visualization influences the
types of judgments that viewers can make from visualized data
(e.g., Bertini et al.’s discussion of subsampling [BS06]). As noted
in Ceneda et al. [CGM∗17], the design choices made in a visual an-
alytics system can guide the exploratory analysis process. By enu-
merating these four functional categories, we enable designers to
consider the ramifications of each design choice focusing on how
summaries might guide analysts towards certain tasks in order to
inform the effective summarization targeting particular analyses.

Purpose: The purpose of a visualization describes its intended
use. Bertin [Ber10] presents purpose as a dichotomy: the visu-
alization either communicates previously understood information
(presentation-oriented) or supports information processing to ad-
dress new questions (exploratory). Schulz et al. [SNHS13] refine
this division to consider the goals of an analysis: exploratory (undi-
rected search), confirmatory (directed search), and presentation
(communicating known results). We hypothesize that purpose of
a summary visualization guides its design as purpose informs how
viewers may wish to navigate the data. Specifically, we anticipate
that summaries for presentation emphasize specific data character-
istics more often than exploratory summaries. This is concordant
with recent design guidelines proposed for presentation-oriented
visualizations, which advise specificity and compactness over gen-
eralizability [Kos16].

Tasks: The summarization methods used to reduce a dataset influ-
ence the analysis tasks supported by a summary. For example, using
kernel density estimation to spatially aggregate values in a scatter-
plot helps viewers find dense clusters, but obscures outliers. Un-
derstanding how the design of a summary can target different sets
of tasks (e.g., presenting a few specific statistics versus permitting
broad, flexible inference) allows designers to systematically reason
about how well a summary visualization supports anticipated anal-
ysis goals (e.g., [AES05, BM13, JYSJ07]).

Task taxonomies provide perspectives on how viewers ob-
tain information from visualizations (see Andrienko & An-
drienko [AA06] and Shneiderman [Shn96] for canonical exam-
ples). Zhou & Feiner [ZF98] explore tasks related to high-level pre-
sentation intents and visual discourse, including several tasks rele-
vant to summarization, such as associate, compare, distinguish, and
rank. More recent work considers how tasks can drive visualization
design (see Rind et al. [RAW∗16] for a synthesis of this space). For
example, Brehmer & Munzner [BM13] discuss how tasks can be
abstracted and expressed to support design across different appli-
cation domains. Schulz et al. [SNHS13] characterize tasks using “5
W’s” (and one “H”): why is a task pursued (a task’s goal), how is a
task carried out (a task’s means), what does a task seek (the target
and cardinality of objects), when is a task performed, and who car-
ries out the task? Schulz et al.’s hierarchical organization of tasks

provides a comprehensive organization that we utilize in designing
our codes for this work. Their questions allow us to systematically
identify the role of different tasks in summary visualizations.

Data: The data type analyzed through a summary visualization
may affect the summarization techniques summaries use and the
features that analysts want to explore. As an example, hierarchi-
cal roll-up can work for high-dimensional data, but is not directly
applicable to three-dimensional spatial data [EF10]. Exploratory
database visualizations first summarize datapoints and their at-
tributes using overviews of large amounts of high-dimensional data
[KK96, Kei02]. Kehrer & Hauser [KH13] survey high-level design
attributes of visual analytics overview approaches for multifaceted
scientific data. They identify many techniques for summarizing par-
ticular data types, including spatial and high-dimensional data, but
do not directly draw conclusions about the affordances of these
techniques and the cross-applicability of summary designs for dif-
ferent data domains. Leung & Apperley [LA93] provide a frame-
work for evaluating visualizations where there is too much data
to display each datapoint clearly. This framework helps design-
ers evaluate visual and computational representations of summaries
based on their effectiveness, expressiveness, and efficiency; how-
ever, it provides no guidance for designing visualizations at these
scales. While several surveys explore visualization for specific data
types (e.g., Aigner et al. [AMM∗07]), we instead look at higher-
level relationships between data type and summary visualization
design. This focus allows us to synthesize broad patterns across the
design space and characterize common practices for summarizing
data in different domains.

3. Methodology

Our goal is to understand how designers use the four target design
factors to inform effective summary visualization and how these
factors interact in different designs. We achieve this goal by con-
ducting a structured survey of a range of examples in the visual-
ization literature that enumerates how these factors lead to specific
designs. We focus our analysis on four central research questions,
each exploring the role of one factor in summary designs:

Q1 Does our taxonomy of data summarization cover the range of
methods used in summary visualization design?

Q2 How does the purpose of a summary affect the design of the
summary visualization?

Q3 How does the design of a summary visualization affect the
tasks that it supports?

Q4 How does the type of data inform common design choices for
summary visualization?

We also explore common correlations between factors to determine
how designers combine these factors in visual analytics systems.

We use quantitative content analysis (QCA) [RLF98] to gather
the necessary data to address these research questions. This
methodology allows us to describe visualizations according to di-
gestible, quantitative factors and uses statistical methods to identify
trends between factors. We choose QCA over other methods such
as grounded theory, which generates concepts from qualitative ex-
ploration, as such methods would likely be heavily biased by the
sample of chosen summary visualizations. Instead, QCA depends
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on a static codebook to quantify attributes, allowing us to draw on
characterizations of our design factors identified in prior work. We
derive our codebook from existing visualization taxonomies to mit-
igate bias from our chosen corpus and our own observations (see
§3.2). We use the results from QCA to validate the organization of
summarization methods and answer our research questions.

Two visualization researchers served as the coders for this sur-
vey. After a preliminary coding of ten papers, the two coders iter-
ated on codebook definitions to clarify lingering ambiguities and
to address emerging concerns regarding measure validity. Of 180
evaluated manuscripts, 54 randomly-selected papers (30%) were
redundantly coded for validation—the Cohen’s kappa measure-
ment for intercoder reliability found substantial agreement between
coders (κ = 0.71, 86% overall agreement). Section 4 presents the
result of this process, identifying themes from our analysis.

3.1. Corpus Construction

We constructed a corpus of example visualizations from the data vi-
sualization research literature. These systems represent a collection
of peer-reviewed visual analytics systems that discuss important
components of design and intended use, minimizing the amount of
inference required to apply our codes. We composed our corpus by
collecting papers from the EuroVis, InfoVis, SciVis/Vis, and VAST
conferences from 2009 to 2015 (1,158 papers). As coding every pa-
per is intractable, we randomly sampled this larger corpus to create
a representative sample as commonly done in traditional content
analysis (e.g., [BKS∗12]). This process generated a corpus of 180
papers (48 EuroVis, 53 InfoVis, 48 SciVis, and 31 VAST papers).
Each paper was initially coded for whether or not they included an
system or technique that used summary visualizations. Papers con-
taining summaries were then coded according to protocol outlined
below. We excluded theory, survey, toolkit, and evaluation papers
as their focus was not a visualization design, making coding sub-
jective as we had no explicit evidence of the designers’ intents.

Using examples from the visualization research community al-
lows us to focus on designs whose quality, effectiveness, and utility
have been reviewed by external experts in the field and that are
tailored for a wide variety of applications. Although visualization
designs are also found in conferences outside of the immediate vi-
sualization community (e.g., NIPS, VLDB, KDD), specific visual-
ization contributions in these fields are relatively rare and unlikely
to appear in a random sample. Further, visualization research pa-
pers emphasize novel contributions and techniques that represent
the state-of-the-art in visualization specifically, and these papers
represent a vetted corpus of summary visualizations that contain
explicit rationales for their design discussed within the article, in-
creasing the validity of our coding practices. However, the choice
of this corpus biases the results of this study toward exploratory vi-
sualizations that are used by researchers or domain experts (not the
general public), which we discuss in Section 5.

3.2. Coding Protocol

Each example in our 180 paper sample was labeled using a prede-
termined codebook characterizing four factors of summary visual-
ization design: the data summarization methods employed, the vi-

Category Subcategory Code

Data
Summarization

Aggregation
Subsampling
Filtering
Projection

Purpose
Exploratory
Confirmatory
Presentation

Task

Means: Navigation

Browsing
Searching
Elaborating
Summarizing

Means: Relation
Comparison
Variations
Relation-seeking

Characteristics:
High-level

Trends
Outliers
Clusters
Frequency
Distribution
Correlation

Data
Data type
Specific data

Other Misc. observations

Table 1: Two coders labeled 180 examples from the visualization
literature according to 22 attributes describing the summary’s pur-
pose, data summarization, supported tasks, and data (§3.2).

sualization’s purpose, the tasks supported by the resulting summary
visualization, and the type of data visualized. We constructed our
codebook by collecting and abstracting categories across 15 exist-
ing typologies describing different aspects of these factors. Table 1
summarizes the coding scheme used in the survey. The final codes
are as follows:

Data Summarization: We use our taxonomy of summarization
methods (aggregation, filtering, subsampling, and projection) to
characterize data summarization in visualization systems. Our four
categories of methods are informed by our observations, coupled
with categories from Schulz et al’s reorganization task [SNHS13],
the visualization design space [CM97], methods for clutter reduc-
tion [ED07], and methods of hierarchical abstraction [EF10].

Aggregation Computationally combining multiple elements
(e.g., hierarchical aggregation [EF10]),

Subsampling Subsetting elements based on stochastic data selec-
tion (e.g., random subsampling [BS06]),

Filtering Subsetting elements based on properties of the data
(e.g., selecting a representative set [ED07]), and

Projection Mapping data elements to a set of reduced or de-
rived dimensions (e.g., principal component analy-
sis [Jol02]).

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



A. Sarikaya, M. Gleicher & D. A. Szafir / Design Factors for Summary Visualization in Visual Analytics

We hypothesize that the data summarization methods used to con-
struct a summary visualization heavily affect the analyses the sum-
mary supports (Q3). We coded high-level methods of data summa-
rization using a combination of four binary codes (present or absent
for each summarization category).

Purpose: We capture the purpose, or goal, of each visualization
by considering whether it supports exploratory (undirected search),
confirmatory (directed search) or presentation-oriented (exhibiting
known results) analyses [Ber10, SNHS13]. These codes describe
the high-level intent of the summarization and are treated as three
binary (present/absent) codes.

Task: Our task codes were drawn from the means and characteris-
tics of Schulz et al.’s taxonomy [SNHS13]. We chose this taxonomy
as a general guide over other taxonomies as it comprehensively re-
flected most categories presented in other taxonomies. We use this
taxonomy to code for three specific types of tasks: means of navi-
gation, means of relation, and data characteristics.

Means of navigation describe how summary visualizations sup-
port analysis beyond the initial presentation. These tasks coin-
cide with Springmeyer et al.’s concepts of maneuvering [SBM92],
Casner’s perceptual search operators [Cas91], Amar & Stasko’s
[AES05] and Yi et al.’s [JYSJ07] intent in interaction, Zhou &
Feiner’s [ZF98] modes of “enabling”, and Heer & Shneiderman’s
“interactive dynamics” [HS12].

Means of object-object relations describe information foraging
tasks, including comparison (seeking similarities; see [GAW∗11,
JYSJ07]), detecting variation (seeking dissimilarities; see [RM90,
ZF98]), identifying discrepancies (seeking outliers [RM90,ZF98]),
and relation-seeking (seeking one of the aforementioned relations
for individual objects; see [Cas91,HS12]). While we initially coded
for discrepancy, this code was removed from our analysis due to
poor agreement between coders.

High-level characteristics code specific judgments of high-level
data attributes afforded by summary visualizations. While Schultz
et al.’s taxonomy does not explicitly define these characteristics, we
used the following definitions that were agreed upon by the coders
after iteration:

Trends Estimate high-level changes across a dependent di-
mension,

Outliers Identify items that do not match the modal distribu-
tion,

Clusters Identify groups of similar items,
Frequency Determine how often items appear,

Distribution Characterize the extent and frequency of items, and
Correlation Identify patterns between data dimensions.

These analysis tasks provide a representative proxy for understand-
ing the informational utility of a summary visualization. Each of
these three categories (summarized in Table 1) is measured as a
combination of binary codes (task supported/unsupported).

Data: We coded for data type using Shneiderman’s data type taxon-
omy [Shn96], with one-dimensional and temporal data collectively
coded as sequence data, encompassing one-dimensional data on a
common axis (e.g., temporal, genomic, or ranked data). While we

considered data size as a potential code due to the utility of summa-
rization for complex datasets, most systems did not provide bounds
on the number of datapoints supported, and tended to design their
methods for use with more than one dataset. For these reasons, cod-
ing for data size would have required significant extrapolation on
the part of the coders, limiting the validity of the resulting data.
We therefore did not consider data size in our analysis, but it is an
important consideration for future work.

Other: We recognize that a codebook constructed a priori may not
account for all elements of designs and tasks of summarization. To
capture traits of summary visualizations not captured by this ini-
tial set of codes, we allowed coders to note additional observations
about each summary for further exploration.

4. Survey Results

We used these codes to quantify factors leading to different design
decisions for summary visualizations. In this section, we use our
research questions (§3, Q1–4) to organize our findings from the
coding process and generate 16 themes (T1–T16) characterizing
common patterns in summary visualization design. These themes
highlight core practices and opportunities in the design of summary
visualizations.

We randomly selected 180 papers from the visualization research
literature, 104 (58%) of which contained summary visualizations.
Of these papers, 64 (36% of the original corpus of 180) provided
sufficient detail within the paper to concretely apply codes describ-
ing our four factors of interests. For simplicity, we refer to these
64 examples as fully-coded summaries. The remaining 40 papers
containing summaries primarily describe scientific visualization
systems focused on rendering and provide little to no description
of the target purpose or analytic tasks supported. To avoid over-
extrapolation, we only coded those systems for data summarization
methods. The full analysis results are available online at
http://graphics.cs.wisc.edu/Vis/vis_summaries/.

4.1. Q1: Methods of Data Summarization

Our first question (Q1) asks whether our taxonomy of four cate-
gories of data summarization methods sufficiently covers the range
of methods used in summary design. We found that all 104 sum-
maries used at least one of these methods (Figure 2), and none
used techniques that could not be expressed as a combination of
the four categories. Most summaries used more than one data
summarization method (T1) (63 summaries of 104, 61%). Over-
all, we found a strong correlation between summarization methods
and tasks: each summarization method tended to favor a particular
set of tasks, and designs often combined methods in order to lever-
age the strengths of individual techniques and increase the breadth
of tasks supported by the summary.

Aggregation — Aggregation summarizes data by combining re-
lated values into representative statistical or graphical structures.
Most surveyed visualizations (74%) use aggregation to reduce
data (T2), with 27% exclusively using aggregation. Visualizations
frequently used aggregation to support tasks characterizing the
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Axis — contributing factors Theme — trends identified from survey data

Data Summarization T1 Most summaries use more than one data summarization method.
Data Summarization T2 Most summaries use aggregation to summarize data.
Data Summarization × Task T3 Summaries using aggregation support tasks characterizing the entire dataset.
Data Summarization T4 Aggregation is common across all data types.
Data Summarization T5 Filtering can be used across all data types.
Data Summarization × Task T6 Projection and filtering emphasize similar data characteristics.
Data Summarization T7 Summaries using subsampling are most common for scientific visualization.
Data Summarization × Task T8 Subsampling supports tasks that are statistically robust to random sampling.
Purpose T9 Summaries serve as a starting point for analysis.
Purpose × Task T10 Exploratory summaries encode a broad set of data characteristics.
Purpose T11 Confirmatory summaries support exploration.
Purpose × Task T12 Presentation summaries emphasize a small set of specific characteristics.
Purpose × Data Summarization T13 Designs for communicating specific, known information use aggregation.
Purpose × Task T14 Summaries using subsampling emphasize exploration.
Task T15 Summaries act as roadmaps to guide detailed exploration by interaction.
Task T16 Summaries emphasize patterns that characterize all data and dimensions.

Table 2: Our analysis revealed sixteen common design themes in examples of summary visualization. Taken collectively as observations,
these themes highlight the challenges in the design of summaries. We use these challenges to reason about the trade-offs in existing designs
and to identify underexplored areas of the design space to inform new summary designs.
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Figure 2: The distribution of summary designs using each data sum-
marization method across 104 coded visual summaries.

entire dataset (T3): aggregation commonly enabled inference into
both data distributions (42 of 54, 78%) and clusters (43 of 54, 80%).

Visualizations often used both aggregation and filtering to take
advantage of trade-offs in both methods: while aggregation empha-
sizes characteristics describing multiple datapoints, filtering can
help tailor these characteristics towards relevant collections. For
example, Network of Names [KLB14] first aggregates recurring re-
lations in social networks and then filters out uncommon relations
to emphasize dominant patterns in large actor networks (Figure 3).
We found that summaries without aggregation targeted individual
value judgments, such as identifying outliers (supported by 70% of
non-aggregate visualizations).

We found that aggregation was commonly used across all
data types (T4). The dominance of aggregation agnostic to data
type indicates that it is a “default” used in many visualization sys-
tems. However, summaries using aggregation exchange flexibility
for specificity: analysts can quickly and accurately complete tasks
related to the chosen aggregates, but do so at the expense of other

Figure 3: Most network summaries, such as Networks of
Names [KLB14], combine aggregation and filtering to summarize
data. The system aggregates different relations across pairs of en-
tities and filters these patterns according to their frequencies to en-
code the relationships that best characterize the dataset.

tasks. For example, replacing a set of values with their average re-
moves analysts’ abilities to reason about data variance or outliers.
Critically examining this trade-off may offer new opportunities for
visualizations (see Section 5).

Filtering — Filtering subsets data based on predefined proper-
ties, allowing analysts to remove potentially irrelevant data. Sum-
maries can also use filtering to reintroduce important data values
lost through aggregation, such as outliers in a scatterplot aggre-
gated by density [MG13] (Figure 4). 47 visualizations (44%) used
filtering; however, filtering was seldom used in isolation (only 17%
of all filtering summaries, supporting T1). Filtering in visualiza-
tions allowed analysts to identify clusters (23 of 47 filtering visu-
alizations, 82%), characterize distributions (22 of 47, 79%), and
evaluate correlation (17 of 47, 61%).

Like aggregation, filtering supported summary designs for all
data types (T5). However, visualizations leveraging filtering pro-
vided analysts with little information about how filtering might bias
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Figure 4: Splatterplots [MG13] represent two-dimensional points
by combining a kernel density estimation with filtering and sub-
sampling of representative outlier points. Combining aggregation
and filtering takes advantage of the trade-offs between these meth-
ods to support a broader variety of tasks.

potential interpretations. This choice again exchanges flexibility for
specificity: filtering allows analysts to closely analyze specific sets
of values at the expense of the rest of the data.

Projection — Projection allows analysts to explore data in a sim-
plified subspace. 30 examples (28%) used projection to summa-
rize data. Similar to filtering, projection was seldom used in iso-
lation (T1), and was commonly paired with either aggregation or
filtering (24 summaries, 80%). Most examples used projection to
summarize large collections of documents (7 of 30, 23%), 3D data
(9 of 30, 30%) and multi-dimensional datasets (10 of 30, 33%).
This bias in data type highlights projection’s common use for high-
dimensional data (Q4): projection methods can synthesize pat-
terns across dimensions to support further summarization in low-
dimensional spaces. For example, text visualizations can use topic
modeling to project document vectors into a lower dimensional
space and then aggregate documents according to topics (e.g., Cui,
et al. [CLWW14]).

Projection summaries support characteristics similar to fil-
tering (T6): locating clusters (17 of 19 summaries, 89%), char-
acterizing distributions (16, 84%), and estimating correlation (14,
74%). However, projection frequently also enables outlier analy-
sis (15, 79%). Visualizations can combine filtering and projection
to help highlight critical patterns in complex data. For example,
Progressive Insights [SPG14] projects data patterns onto statistical
axes and filters the strongest patterns along each axis.

Projection was seldom used for presentation (2 of 20 presenta-
tion visualizations, 10%), but instead supported exploratory visual-
izations like Progressive Insights. We hypothesize that the mathe-
matical complexity of many projection methods makes it difficult
to clearly communicate meaningful narratives about the data. How-
ever, our corpus included few examples of presentation-oriented
visualizations and a deeper exploration of the role of projection in
presentation is important future work.

Subsampling — Subsampling reduces datasets by stochastically

Confirmation

Presentation

Exploration

30

9
3

17 3

2

0

Figure 5: The distribution of summaries designed for each purpose
over 64 fully-coded summaries.

removing values from the dataset. Similar to projection, subsam-
pling is commonly used as a composite operation to reduce data
to manage the complexity of the resulting visualization: while
only 16 of the 104 surveyed summary visualizations used subsam-
pling, subsampling was commonly paired with other summariza-
tion methods (aggregation: 8 visualizations, 47% of subsampled
examples; filtering: 3, 18%; and projection: 4, 24%).

Subsampling was predominantly used for spatial visualiza-
tion (T7) (11 of 17 examples, 65% of subsampling use), where it
reduced the visual complexity of aggregated structural data. In this
context, subsampling is primarily used to assist rendering (mini-
mizing noise), so only six subsampling visualizations were fully-
coded. These visualizations primarily support trend analysis (5 of
6, 83%) and characterizing distributions (5, 83%), suggesting that
subsampling can support summarization where analysis tasks
are statistically robust to random sampling (T8). This correla-
tion implies subsampling may be a powerful tool for summaries for
novel exploratory visualizations, especially when the target tasks or
properties of interest are unknown a priori.

4.2. Q2: Purpose

Q2 addresses how the purpose of a summary visualization affects
its design. Purpose codifies whether summaries are designed for
exploration, confirmation, or presentation (Figure 5). Most fully-
coded summaries supported exploration (59 of 64, 92%), allow-
ing viewers to analyze large collections of data without any a pri-
ori goals. 66% (42) were designed for directed analysis (confirma-
tion), while only 22% (14) were explicitly designed to communi-
cate known results (presentation). The dominance of exploration
indicates that summaries frequently serve as a starting point for
detailed analysis (T9). 95% (56 of 59) of exploratory summaries
allowed analysts to actively navigate the dataset.

Additionally, exploratory summaries support a broader set
of data characterization tasks (T10), such as identifying trends,
outliers, clusters, frequency, distribution, and correlation. 70% (41)
of exploratory summaries enabled viewers to explore more than
half of the coded characterization tasks, compared to 43% (6 of
14) for presentation summaries. 12% of exploratory summaries (7)
supported all six. As an example, Chen, et al. [CYW∗16] uses a
set of summarization methods to visualize different patterns across
geo-tagged social media data (Figure 6). Analysts can use the sys-
tem to explore aggregated movement trends and interact with the
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Figure 6: A visual summary in the system built by Chen, et
al. [CYW∗16] uses both aggregation and filtering in order to sup-
port a wide range of high-level analysis tasks.

Figure 7: World Lines [WFR∗10] aggregates spatial data across dif-
ferent simulation runs to allow viewers to directly search for the
simulation with the best outcome.

summary to analyze data distributions, frequency, and geospatial
clusters.

Confirmatory summaries (those used to validate prior hypothe-
ses) were often also exploratory: 61% of summaries (39 of 64)
supported both exploration and confirmation while none were de-
signed for confirmation or presentation alone. Like exploratory de-
signs, confirmatory designs support a broader array of data char-
acterization tasks than presentation-oriented summarization: 68%
supported more than half of our coded tasks. These correlations
suggest that summaries designed for confirmation also support
exploration (T11): confirmatory tools generally allow analysts to
not only confirm specific hypotheses about data, but also to further
refine and develop additional hypotheses.

In contrast, presentation summaries often emphasize a small
set of data characteristics (T12). 57% (8 of 14) of presen-
tation summaries communicated three or fewer coded charac-
terization tasks, and only one design communicated all six
(Domino [GGL∗14], which also supports exploration). All coded
presentation summaries used aggregation to summarize data. Of
these, 50% (7) used aggregation alone and 35% (5) used aggre-
gation plus filtering. This pattern suggests that designs commu-
nicating specific, known information heavily rely on aggrega-
tion (T13). It is important to note that our choice to survey only
examples from the visualization literature biases our analysis to-
wards exploratory visualizations. However, we anticipate the heavy
use of aggregation we observed in presentation summaries will ex-
tend to examples in other outlets, such as news organizations, as
it aligns with modern guidelines for effective presentation. More
specifically, aggregation can summarize data into a small number
of precise features to emphasize known findings, encouraging ef-

Figure 8: Summaries act as roadmaps for exploration, starting
at a high-level of abstraction and letting viewers drill down into
data. Glyph SPLOMs [YWS∗14] summarizes clustering patterns
in component SPLOM scatterplots to help identify scatterplots to
further explore.

fective presentation [Kos16]. We discuss trade-offs of this focus in
Section 5.

Only five coded summaries were not explicitly designed for ex-
ploration. All five were confirmatory visualizations using aggrega-
tion, and none used subsampling. This bias indicates a potential
trade-off between purpose and subsampling. Subsampling meth-
ods favor exploration (T14) as directed search may be inhibited by
stochastically reducing data. Aggregation alternatively helps guide
analysts by presenting precise summarized values for well-defined
tasks. For example, World Lines [WFR∗10] uses aggregation to
summarize parallel simulations of temporal events enabling com-
parison across known metrics for disaster planning (Figure 7).

4.3. Q3: Tasks

Q3 asks how the design of a summary visualization affects the tasks
that it supports. While the previous subsections touch on interac-
tions of methods and purpose with supported tasks, here we identify
several trends to help inform how summarization affects possible
avenues of analysis (Figure 9). From the 64 fully-coded visualiza-
tions, we found themes describing how designs allow viewers to
navigate the dataset, how summarizing different data types priori-
tize different analyses, and data characteristics summaries univer-
sally preserve.

Means of Navigation — Through our survey, we found that most
summaries present information at high levels of granularity and
allow analysts to drill down into data to uncover specific details
within the data. This indicates that summary visualizations, like
other forms of overview, generally provide a starting point for anal-
ysis, allowing analysts to browse for both unknown (58 of 64, 91%)
and expected patterns (48 of 64, 75%). The use of summaries as a
starting point for navigation implies that effective summaries can
act as roadmaps to guide user interactions with the data (T15).
As an example, glyph SPLOMs [YWS∗14] summarize distribu-
tions within specific SPLOMs so that viewers can identify scat-
terplots to explore in detail (Figure 8). This raises an important
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Figure 9: The distribution of summary designs supporting different kinds of analysis tasks across 64 fully-coded summaries.

challenge for visualization designers: what properties of the data
might make for an effective starting point for analysis?

Existing summary visualizations often choose to first empha-
size distributions (48 of 64, 75%) and clusters (51, 80%) within
data. Analysts can then navigate these structures to identify spe-
cific properties and values of interest. Drilling down into data gen-
erally takes three forms: changing the data granularity (elaborating
in our codebook; 35 of 64, 55%), changing the visual representation
and/or summarization method (28 visualizations, 44%), or adding
supplemental information to the existing display. Designers may
choose from these strategies based on the parameters of the data
and analysis tasks; however, summaries must actively balance the
need to support different tasks and granularities with potential chal-
lenges introduced from inconsistent visual representations [QH17].

Means of Relation — Most summary visualizations enable view-
ers to identify similarities (89%) and differences (88%) between
collections of datapoints. However, significantly fewer support
relation-seeking between individual items (45%), with most of
these being network visualizations, which prioritized important re-
lationships over specific structures within the data. We found no
notable relationships between relation seeking tasks and purpose
or summarization methods. We anticipate this is because sum-
mary methods tend to support analyses of large collections of
data. These analyses naturally privilege tasks emphasizing higher-
level attributes of the data (e.g., data distributions and relationships
between data classes) rather than individual data values, which
quickly grows intractable as the datasets grow larger.

Data Characteristics — While the prior sections discuss interac-
tions between data characteristics and other aspects of summary
design, we found that summary visualizations generally empha-
sized data clusters (80%) and distributions (75%), two character-
istics that describe entire sets of data points. Trends (59%), out-
liers (59%), frequency (56%), and correlation (58%) were roughly
equally supported across all visualizations. The bias towards clus-
ters and distributions suggests that summarization often empha-
sizes descriptive aggregate patterns across all data values (T16),
rather than patterns in individual values or relationships between
specific dimensions. 11% of coded summary visualizations support
all characterization tasks (7 of 64).

4.4. Q4: Data Type

Q4 asks how data type affects summary design. We found that the
underlying data systematically influenced summary visualization
design. For example, nine of the ten coded visualizations for one-
dimensional data used aggregation and support cluster analysis. For
2D data, summary visualizations frequently support discovering
trends (7 of 8, 88%) and frequency patterns (6, 75%). However, 3D
data summaries emphasize data distributions (5 of 7, 71%) rather
than trend or frequency (3 and 1 of 7, 43% and 14%, respectively).

Neither multidimensional nor network data used subsampling
frequently (5 summaries of 24, 21%; 0 of 10, 0%). This method-
ological bias is likely a result of common analytic practices for
these kinds of data. For example, stochastically removing infor-
mation in networks could potentially remove critical structures in
the data, such as relations between different levels of hierarchy. We
observed that nearly all summarizations of network data utilized
aggregation (through collapsing important collections of nodes or
edges) and filtering (through selecting meaningful or common con-
nections) to emphasize relation-seeking between salient entities.
For example, Networks of Names [KLB14] highlights relationships
between large collections of entities by first aggregating all entity
relations and then filtering on these aggregate frequencies to visual-
ize the most common relations in the dataset. While these patterns
suggest that designers employ common strategies based on the tar-
get data type, we hypothesize that our framework will allow de-
signers to consider novel summary approaches that transfer design
elements across data types and domains by systematically consid-
ering trade-offs offered by different summarization approaches.

5. Discussion

We use QCA to answer four research questions pertaining to how
designers consider a visualization’s purpose, summarization meth-
ods, data type, and target analysis tasks in constructing summary
visualizations. Our analysis resulted in 16 design themes (Table 2)
commonly used for summary visualizations in visual analytics. We
also confirm that our taxonomy of four methods of summariza-
tion is sufficient to describe the set of summarization techniques
used in summary visualizations (Q1). We can use the themes iden-
tified through this survey to synthesize common design practices
and identify opportunities for innovation in summary design.
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Q2: Purpose of Summary Visualizations — Designers frequently
use summary visualizations as a starting point for analysis (T7),
serving as a roadmap to guide analysts’ interactions with data
(T15). The ways summaries support these goals tie tightly with
their purpose: a summary can allow analysts to explore a broad set
of data features (T10) or emphasize particular characteristics of in-
terest (T12). We find that exploratory visualizations generally use
the former strategy, while presentation visualizations use the latter.

While these patterns follow conventional visualization strategies,
we found few examples that invert this paradigm. For example, sup-
porting larger numbers of tasks can overwhelm the viewer. In some
exploratory situations, the viewer may not know what questions
to ask, or even how to “read” a visual paradigm. In these situa-
tions, designers might choose to target anticipated analyses with
the goal of focusing exploration. Future research should explore
strategies for achieving this guidance without inadvertently biasing
analyst workflows. As an example, compositing multiple summa-
rization methods can help to focus exploration on relevant subsets
of data, but maintain the flexibility of focusing on disparate sets.
Alternatively, presentation summaries that support a broader set of
tasks may allow viewers to construct a deeper understanding of the
narrative argument offered by that visualization. Presentation sum-
maries that carefully balance clarity of target attributes with sup-
plemental features could potentially lead to increased trust in the
data [CRMH12].

Q3: Tasks Supported by Summary Designs — Our exploration
highlighted heavy use of task specificity in existing designs. Sum-
mary visualizations often use aggregation to emphasize specific
data characteristics, such as clusters (T13). Alternatively, less com-
mon subsampling strategies tend to provide greater flexibility in
analysis, retaining global characteristics of the data (T14).

While existing designs tend to emphasize specificity, we argue
that the trade-off of task specificity and flexibility offers an inter-
esting consideration for designers. Specificity can bias analysts to-
ward only considering a particular set of characteristics. Aggrega-
tion is an example of this—aggregation systematically combines
multiple values into a single representation, which can influence
data interpretation (noted by Saraiya et al. [SNLD06]). The speci-
ficity bias indicates the need to look toward more holistic views
of creating summaries. By noting the full set of tasks, design-
ers can construct a summary that provides sufficient specificity to
support these tasks, while also allowing analysts to pivot between
multiple views or representations to support serendipitous discov-
ery [THC12]. As an example, summary visualizations can use vi-
sual encodings that allow analysts to visually estimate features of
data distributions from individual datapoints rather than encoding
these features directly. Such visual aggregation may enable a more
holistic view on data [SHGF16], though we found no summaries
explicitly leveraging this strategy.

Q4: Data Type Drives Summary Design — Summaries can rep-
resent a wide array of data types. Aggregation and filtering are es-
pecially flexible for constructing summaries regardless of data type
(T4, T5). The broad use of these methods suggests that visualiza-
tions could adapt many summarization approaches across data do-
mains. However, properties of the data and analysis context may

preclude the use of some methods. For example, we found that pro-
jection methods were commonly used to summarize text and spatial
data (1D and 3D data, respectively; T7). However, we did not see
these methods used in sequence data despite conceptual similari-
ties between these data types (e.g., texts are sequences of words).
Considering how summarization methods and other summary tech-
niques might transfer across data types may offer new approaches
for summary visualization in different domains.

Aggregation methods in particular may offer novel summary
approaches. For example, continuous 2D data can be meaning-
fully summarized using kernel-density estimation (KDE); however,
a kernel does not easily map to hierarchical data. Alternatively,
Elmqvist & Fekete [EF10] demonstrate how hierarchical aggrega-
tion can be applied to non-hierarchical data. Our survey identified
several characteristics not conventionally supported by summaries
for specific data types, such as frequency in three-dimensional data
or subsampling in network or multi-dimensional data. The lack of
common design strategies in these areas highlight potential scenar-
ios that require innovative design approaches for intuitive summary
visualization.

5.1. Limitations

This work provides a systematic analysis of common practices for
summarization in visual analytics. Our exploratory survey char-
acterizes the use of four design factors in summary visualization.
However, our data-driven approach is limited by the need to use
sampling to manage the scale of our corpus. Although we antic-
ipate that the collected systems and themes characterize summa-
rization more broadly, we cannot make absolute claims about the
generalizability of our results.

Our analysis focuses on high-level design factors for summary
visualization such as summarization methods rather than spe-
cific encoding choices. This high-level focus provides a general
overview of current practices in summarization, but prevents us
from generating more prescriptive design recommendations. For
example, our analysis revealed that the use of specific encodings
in summary visualizations is a secondary step to determining the
primary summarization method. This means that we could not per-
form a conclusive analysis of encoding choices without first under-
standing summarization. Our results provide a necessary scaffold
for future work in understanding how our four design factors may
inform effective encoding design.

We sampled from the visualization literature in order to codify
trends that represent the state-of-the-art in summary visualization.
This choice also meant that summaries designed for presentation,
common in journalism and professional dashboards, are underrep-
resented in our survey [Kos16]. Expanding the corpus studied here
to both include examples from practitioner communities and to use
stratified sampling to select underrepresented design features could
help to develop a broader set of design patterns for both exploratory
and presentation summary visualizations.

6. Conclusion

As datasets grow in size and complexity, effectively leveraging
summarization becomes increasingly critical for visual analytics
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systems. In this paper, we characterize common approaches to sum-
mary visualization design using four factors. Through a structured
survey, we identified the importance of summary visualization and
16 design themes relating data summarization methods, visualiza-
tion purpose, analysis tasks, and data types. The survey results
highlight trade-offs in the use of different summarization methods
and biases in their applications in existing designs. Our results can
inform effective summary design and introduce a more principled
understanding of summary visualization.
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